396 OUTPUT TFT-LCD SOURCE DRIVER WITH RAM

DESCRIPTION

The μ PD161622 is a TFT-LCD source driver that includes display RAM.
This driver has 396 outputs, a display RAM capacity of 371,712 bits (132 pixels $\times 16$ bits $\times 176$ lines) and, can provide a 65,536 -color display.

FEATURES

- TFT-LCD driver with on-chip display RAM
- Logic power supply voltage: 2.5 to 3.6 V
- Driver power supply voltage: 4.3 to 5.5 V
- Display RAM: $132 \times 16 \times 176$ bits
- Driver outputs: 396 output
- CPU interface: Serial, 8-bit/16-bit parallel interface selectable
- Colors: 65,536 colors/pixel
- On-chip VCOM generator
- On-chip timing generator
- On-chip oscillator

ORDERING INFORMATION

Part Number	Package
μ PD161622P	Chip

Remark Purchasing the above chip entails the exchange of documents such as a separate memorandum or product quality, so please contact one of our sales representatives.

[^0]
1. BLOCK DIAGRAM

Remark /xxx indicates active low signal.

2. PIN CONFIGURATION (Pad Layout)

Chip size: $3.60 \times 17.80 \mathrm{~mm}^{2}$ TYP.
Bump size (output type A): $35 \times 94 \mu \mathrm{~m}^{2}$ TYP.
Bump size (input \& dummy): $80 \times 86 \mu \mathrm{~m}^{2}$ TYP.

Alignment mark (mark center, unit: $\mu \mathrm{m}$)

	X	Y
M1	-1615	8715
M2	-1615	-8715
M3	1435	-8715

Table 2-1. Pad Layout (1/4)

FnN	FnNene	PadType	X[m]	Y[$\mu \mathrm{m}]$	FnN	FnNene	PedType	X[ω ¢ ${ }^{\text {d }}$	Y[M]	PnN	FnNane	PadType	X[LT]	Y[um]
1	DMMY	B	-16740	83000	61	VE	B	-1674.0	11900	121	क	B	-16740	-01000
2	DMM	B	-1674.0.	820.00	6	VCI2	B	-1674.0	107000	12	16	B	-167400	-61300
3	DMM	B	-1674.0	81500	63	VCD2	B	-1674.0	9800	12	OT	B	-167400	-62500
4	TOT15	B	-1674.00	80000	64	VCD11	B	-1674.0	8300	124	VCCIMOI	B	-16740	-63700
5	TOT4	B	-1674.00	79100	6	LTMP	B	-1674.0	7100	12	P0	B	-167400	-64900
6	TOT13	B	-1674.00	79000	66	R30P	B	-1674.00	5900	126	VSSMAIE	B	-167400	-66100
7	1012	B	-167400	76000	67	DCON	B	-1674.0	47000	17	P	B	-16740	-673000
8	T0]11	B	-167400	75000	68	Vcall	B	-167400	35000	128	VCCIMOI	B	-16740	-68000
9	10]10	B	-1674.0	743000	69	VSs	B	-1674.0	2300	129	P2	B	-16740	-897000
10	T019	B	-1674.00	731000	7	VCO	B	-1674.0	1100	130	Vssineis	B	-16740	-70900
11	T018	B	-1674.00	71900	71	VCa	B	-1674.0	-1000	131	P3	B	-16740	-72100
12	Tal7	B	-1674.00	70000	72	VSS	B	-1674.0	-13000	132	VCCIMOI	B	-16740	-73000
13	TVI6	B	-1674.0	68000	73	Vss	B	-1674.0	-2000	133	GSIB	B	-16740	-74500
14	Tal5	B	-1674.0	68300	74	ONL	B	-1674.0	-3000	134	GaK	B	-167400	-75000
15	Tal4	B	-1674.00	670.00	75	ONH	B	-1674.0	40000	135	G31	B	-167400	-78000
16	T013	B	-1674.00	680000	76	OR	B	-1674.00	-61000	136	G12	B	-167400	-781000
17	TOU2	B	-1674.0	64000	77	ORH	B	-1674.0	-73000	137	R39NG	B	-167400	-79000
18	TOT1	B	-1674.0	63500	78	VS	B	-1674.0	-8000	138	LPGG	B	-167400	-80500
19	Talo	B	-1674.0	62000	79	VS	B	-1674.0	-97000	139	DMMY	B	-16740	-81700
20	Vssina	B	-167400	611000	80	VSS	B	-1674.0	-10000	140	DMMY	B	-167400	-82000
21	ISTMH	B	-167400	599000	81	Vcall	B	-167400	-121000	141	DMMY	B	-167400	-841000
2	ISIRSST	B	-1674.00	588000	82	vall	B	-1674.0	-133000	12	DMM	B	-13000	-87400
23	Toscery	B	-1674.0	5/3000	83	VCa	B	-167400	-14000	143	DMMY	B	-51000	-87740
24	TOSC51]	B	-1674.00	56300	84	VCa	B	-1674.0	-15000	14	DMIV	B	3300	-87740
25	T080	B	-1674.0	551000	88	VCOM	B	-1674.0	-16000	145	DMMY	B	11700	-87740
26	10800	B	-1674.0	53900	86	DMM	B	-1674.0	-18100	146	DMMV	B	16700	-8000
2	VCCIMM	B	-167400	520.00	87	DMMY	B	-1674.0	-19800	147	DMM	A	16700	-86200
28	[${ }^{\text {W }}$	B	-1674.00	515000	88	VssMal	B	-1674.0	-20800	148	DMM	A	154000	-84/850
29	Vssinal	B	-1674.00	500000	89	VCOMR	B	-1674.00	-21700	149	5306	A	16700	-8437.00
30	csald	B	-1674.0	491000	90	BGTN	B	-1674.0	-22000	150	S33	A	15400	-839350
31	Vssinut	B	-1674.0	479000	91	VCl(MOI)	B	-1674.0	-241000	151	5394	A	16700	-835400
32	CSON	B	-1674.00	46700	9	\#स्\#	B	-1674.0	-25000	152	538	A	154000	-831250
33	Vssinal	B	-1674.00	485000	93	Vssinu1	B	-167400	-288000	153	5382	A	16700	-8271.00
34	CSIB	B	-167400	43000	94	VR	B	-167400	-27000	154	5391	A	154000	-822950
3	D15	B	-1674.00	431000	95	Vo	B	-1674.0	-289000	15	539	A	16700	-81880
36	D14	B	-1674.0	4190.00	96	V1	B	-1674.0	-301000	156	5398	A	154000	-84665
37	Di3	B	-1674.00	40700	97	V2	B	-1674.0	-31300	15	5388	A	16700	-81060
38	D12	B	-167400	338000	98	V	B	-1674.0	-352000	158	5387	A	154000	-806350
39	D11	B	-1674.0	38800	99	V4	B	-1674.00	-33000	159	5386	A	1670.00	-802200
40	DiO	B	-1674.00	371000	100	V5	B	-1674.0	-34000	100	5336	A	154000	-798050
41	D	B	-1674.00	38000	101	VR1	B	-1674.0	-36100	161	5384	A	16700	-799900
42	\square	B	-1674.0	34000	10	VR2	B	-1674.0	-3300	162	5383	A	15400	-7897.50
43	D(S)	B	-167400	338800	103	Vssinul	B	-167400	-38800	163	5382	A	16700	-788600
4	Db(Sa)	B	-1674.00	323000	104	IBE\#1	B	-1674.0	-39700	164	5381	A	15400	-7814.50
45	DS	B	-1674.00	311000	105	IBP\#2	B	-1674.0	-40900	16	530	A	16700	-771300
46	D	B	-1674.00	209000	106	TBGR	B	-1674.00	- 421000	166	S339	A	154000	-7731.50
47	DB	B	-1674.00	28800	107	DAC	B	-1674.00	-43300	167	S3/8	A	16700	-780000
48	D	B	-1674.0	23000	108	DAG6	B	-1674.0	-4500	188	S37	A	15400	-664850
49	D	B	-1674.00	23000	109	DAC5	B	-1674.0	-45000	189	S3/6	A	167000	-7007.00
50	D	B	-1674.0	251000	110	DAC4	B	-1674.0	-48000	10	S3/5	A	15400	-756550
51	Vssinal	B	-1674.0	230000	111	DAC3	B	-1674.0	-481000	171	S33	A	16700	-75400
52	/CS	B	-1674.00	220.00	112	DAC2	B	-1674.0	-49300	172	S3/3	A	154000	-748250
53	174	B	-1674.00	215000	113	DACl	B	-1674.00	-50500	173	S3/2	A	167000	-741.00
54	B	B	-1674.00	200000	114	DACO	B	-1674.00	-51700	174	S331	A	154000	-739950
5	NRRMY	B	-1674.00	1910.00	115	Vssinul	B	-1674.00	-52900	175	5330	A	1670.0	-73880
56	R2P	B	-1674.00	1790.00	116	OO	B	-1674.00	-54100	176	5339	A	154000	-731650
5	VCC2	B	-1674.0	1670.00	117	O 1	B	-1674.0	-53000	177	5338	A	16700	-72500
58	PSX	B	-167400	1550.00	118	O2	B	-1674.0	-58000	178	5387	A	154000	-723350
59	C6	B	-1674.00	1430.00	119	O3	B	-167400	-5ra00	179	5336	A	1670.00	-719200
6	Vssima\|	B	-1674.00	1310.00	120	व4	B	-167400	-58800	18	S36	A	154000	-715050

Table 2－1．Pad Layout（2／4）

PinN	AnName	PadType	X［ m ］	Y［um］	Pin ${ }^{\text {a }}$	PnNare	PadType	X［m］	Y［um］	PnN ${ }^{\text {a }}$	PinName	PadType	X［um］	Y［m］
181	584	A	16700：	－710900	24	5304	A	16700：	461900	301	S24	A	16700：	－21200
18	S\％3	A	1340300	－067．50］	242	S\％3	Ä	1540301	43700	30	S243	A	$13 \% 030$	－2087．00
13	Š2	Ä		－$-1060{ }^{\text {a }}$	243	S30	Ä	1̈\％̈Ö	－43030］	$3{ }^{3}$	S2420	Ä	1̈চ̈öö	
184	S07	Ä	$1{ }^{1503000}$	－884	24	S30	Ä	1540̈Ö	4040	304	S231	A		
1̈	3×0	Ä	1 1̈ÖÖ＇	－9\％3030	245	STO	Ä	1\％̈ÖŎ	415300	$3 \square^{\circ}$	S240	A	16700	－1930
18	צ739	Ä	1540̈0̈：	－9007． 5	246	\＄299	Ä	15400	41170	30	329	Ä	154000	－1921．50
187	338	Ä	їテ̈Ö：	O2000	247	${ }^{2} 28$	Ä	1̈®̈Ö	433000	37	S338	A	10100	－1800
18	387	Ä	1540000	－8\％830］	248	S27	Ä	1540300	4385	38	S37	Ä	154000	－183000
19	37	Ä		－6ıTM	－．．． 249	\＄30	Ä	\％̈ÖÖ	48870	30	S336	Ä	1̈ธ̈ö	－1797．0̈
197	S3\％	Ä	15\％ÖOb	－6350］	－	${ }^{2} \times 2$	Ä	1540̈Ö	－23430］	3̋10	S235	A	1540̈Ö	－1735030
191	S゙34	Ä		－0394\％	21	S34	Ä		40400	311	Š34	A	$1 \chi^{\circ} 0$	－174\％0̈
19	3	Ä	1540000	－ 0230	22	\＄293	Ä	154030	410	32	S33	Ä	154000	－6\％200
193	$3{ }^{3}$	A		－6ెi100	23	S2P	Ä		4421.00	313	S23	Ä	1̈\％000	－\％303100
194	$3{ }^{3} 1$	A	1540300	－	254	S20	Ä	1540̈Ö	407903	3 亿̈	S3i	A	1540゙Ö	－159830
197	S゙30	Ä		Oై30］	2\％	Sxi	Ä	10000	403800	315	S30	A	1̈®̃ö：	－154800
196	S゙39゙	Ä	1530̈Ö＇	－4\％ 480	－${ }^{2} \mathbf{2} 6$	Sz89	Ä	1540̈Ö	－30\％${ }^{3}$	36	Sz20	A	1540̈Ö＇	－ 130303
197	Š348゙	Ä			－．．．．7	S288	Ä	1\％̈öö	3303000	37	S228	Ä		
198	S337	Ä	1530̈Ö＇	－4\％330	238	S38	Ä	1540̈Ö	393130	Зั18	S\％27	A		－ 14233
198	S゙3¢	Ä		－ั²0	230	236	Ä	$1{ }^{10} 0$	－30\％20	3 3̋9	S206	A		-13200
20	¢゙3¢	A	154000	－3303	20	\＄28	Ä	15400	33030	30	S2\％	A	154000	－134030
201	S゙34	Ä	1 1̈ÖÖ＇$^{\text {a }}$	－2\％ 2 O\％	21	S38	Ä	\％̈ÖÖ	－3\％900］	321	S22 2	Ä	10100	－120000
20	¢333	Ä		－2373	23	S38	Ä	1540̈Ö	37470	32	Sz3	Ä	150300	－1307．00
203	Š32	Ä		－ั¢冖¢	23	588	Ä	$1{ }_{\text {İÖÖ }}$	－30600	33	S22	A	1̈®̄Ö	－27160̈
24	S31	Ä	154000	－6゙540	234	¢381	Ä	15400	3036	344	ST2	A	15400	－11744030
206	Š30	Ä	1 1̈ÖÖ：$^{\text {a }}$	－6゙1300	－	S\％0	Ä	\％̈ÖÖ：	－30300］	35	S20	Ä	101000	－11330̈
206	338	Ä	154000	－0゙71．50	206	ST2	Ä	1540̈Ö	3381.00	36	S279	A	154000	－1091．0］
27	S33	Ä		¢30］O	267	Sె28	Ä	$1{ }_{\text {\％̈ÖÖ }}$	З30̈Ö	37	S218	A	1̈®̄Ö	－100000］
28	S33	Ä	154000	－28030	28	STZ	Ä	15400	30850	38	S27	Ä	15400	－10830
20	Sั36	Ä		－397\％	290	Š26	Ä	1̈®ె0̈：	3\％7\％	39	S216	A		－9\％\％
20	¢3\％	Ä	1540300	－30	20	Š2\％	Ä	1540̈Ö	34150］	30	Š215	Ä	1540̆0̇1	－ 9330
211	S334	Ä		－ 3040	21	ST2	Ä	10000	－33400］	33	S274	Ä	10000	-88400
212	¢33	Ä	154000	－32230	212	SZ3	Ä	1540̈0	33230	33	S213	A	1540̈0̈	-8230
213	S332	Ä	1̈̈ד̈Ö：	－5\％1．00	23	ST2	Ä	10000	－391．00	33	S＜2il	A		－800．00
24	331	A	154000	－63930	24	SZ71	Ä	154000	－34930］	334	S211	A	154000	－13900
215	S30	Ä	$1 \chi_{10000}$	－3080	275	S\％	Ä	1600	－30 200	33	SP\％	A	1600	－7800
$2{ }^{2} 6$	332	Ä	1540000	－ 6	$2{ }^{2} 6$		Ä	1540̈Ö	－316̈ ${ }^{\text {a }}$	36	S＜20	A	154030	－6＂630
277		Ä	1̈ธ̈Ö：	－0150	27	¢298	Ä	1̈®̈Ö：	－312300	33	STB	Ä	$1 \square_{10000}$	－ä
218	S32	Ä	154000	－3300	278	37	Ä	154000	30835	338	STO	Ä	154000	－30350
2 2ั	336	Ä		－	29	236	Ä	$1{ }_{100000}$	30200	39	S20	A	1̈®000	－620
20	S33	Ä	1540300	54	20	¢20゙	Ä	1540̈Ö	－30030］	30	STO	A	1540̈Ö：	－5iö50
27	S324	Ä		－54äÖ	231	S3 24	Ä		－2030］${ }^{\text {a }}$	$3{ }^{3}$	Sxı	Ä	1̈ठ̈Ö＇	－4030］
273	S333	Ä	$154030{ }^{\text {a }}$	－547\％	28	\％ 23	Ä	1540̈Ö	－237730	$3{ }^{3}$	Š203	Ä	1540̈Ö	420
23	Š323	Ä	1 ו̈ד̇ö：	－5\％	…230	Š20	Ä	1\％̈öö：	－3876̈0゙	3゙3	ŠOX＇	A		300000
24	S321	Ä	15\％0̈Ö：	－33240］	284	STO	Ä	1540̈Ö	－233430		Sxit	Ä	154030̈＇	－3440
26	S30	A	1010000	－2830］	236	S20	Ä	$1 \overline{10}_{16000}$	－23930̈	3ँ5	ŠOOT	Ä		－3030̈
26	S3i9	Ä	154000	－24i． 0	26	S39	A	154000	－231．50	36	S＂199	Ä	154000	－201．50
27	Sั3i8	Ä	1̈̈0̈Ö：	-20000	28	S338	Ä	10000	－21000］	37	Ş198	A	16000	-2000
28	Sั3i7	A	154000	－513030	288	S37	Ä	154000	－26350］	38	S̈197	Ä	154000	－17850
29	S3\％	Ä	1\％000\％	－511700	239	S236	Ä	\％̈®̈ö	－27200	39	S̈\＄6	Ä	1̈®ె0）	－133．0̈
230	Š315	Ä	$154030{ }^{\text {a }}$	－30530］	2̈0	S3 23	Ä	1540̈Ö	－23030］	30	S̈195＇	Ä	15\％ÖÖ	－9\％30
23	S゙3i4	Ä	1̈ธ̈öÖ：	－¢3\％	29	S34	Ä	1̈ד̃Ö：	－24400	31^{1}	Š9̈	A	1̈®̄Ö：	－4\％0̈
23	S3T3	Ä	15400	49085	22	S33	Ä	15400	－23030	3	ST93	À	154000	－1250
233	S332	Ä	1̈®0̈Ö	465100	231	S23	Ä	1̈ד00	－246100］	33	DMM	A	1̈®00	2000
234	Sั11	Ä	153000	49030	294	S51	Ä	1540̈Ö	－241930］	34	DMW	A	15300	O30
23	Š3io	Ä	1̈̈ÖÖ：	480300	236	S30	A	1̈070̆	-231800	3\％	DMM	A	1̈0̈0̈	11200
236	Š30］	Ä	1540300	4836	296	324	Ä	1540̈Ö	－23030	$3{ }^{3}$	DMM	A	154030	15350
23	3×18	Ä	1 1̈®̈Ö $^{\text {a }}$	418000	27	3248	Ä	101000	-20600	37	DMM	A	107000	190600
238	S37	Ä	$154030{ }^{\text {a }}$	474335	288	324	Ä	1540̈Ö	－27350	38	D̈MW	Ä	154030̈＇	23030
239	536	A	1̈®0̈Ö：	401000	290	246	A	1̈̈ÖÖ	－2̌12 200	309	DัM	A		2380̈
240	515	A	15400	468350	30	S24	A	15400	－217050	30	CNM	A＇	15400	31950

Table 2－1．Pad Layout（3／4）

PnNa	PinNere	PadType	X［jm］	Y［um］	PnNo	PinName	PadType	X［m］	Y［um］	PnN ${ }^{\text {a }}$	PinName	PadType	X［um］	Y［um］
361	DMM	A	16700：	30.0	421	S136	A	16700：	2851.00	481	S／6	A	$16700:$	5341.00
302	D̈二゙ั	Ä		42030	427	S̈́3゙ろ	Ä			482	Sั5	Ä		53\％230
$3{ }_{3}$	Divor	Ä	1 ו̈ד̈ö：	\％ 4103	423	Š3 3	Ä	1̈\％̈Ö		483	S̈4	A		5¢24\％
304	ถับ	Ä	$154030{ }^{\text {a }}$	48303	437	Š3゙3	Ä	1540̈Ö：	27\％${ }^{\text {\％}}$	484	ST3	Ä	1540̈Ö＇	546̈5̈
Ӟ＇	S゙¢̇＇	Ä		57\％	235	Ši3	Ä	10̈ÖŎ	3037700	486	ST2	A		30700
306	S̈19	Ä	154000	5303	46	Ši31	Ä	15400	30350	486	S̈1	Ä	154000	438480
30	Šis	Ä	1 1̈ÖÖ：$^{\text {a }}$	¢̈ÖÖ	47	Sี3̇3	Ä	107000	3Tơợ	48	Sio	Ä	10000	4300
38	S̈isi	Ä	1540000	¢̈1．50	48	Š2̛	Ä	1540̈Ö	3̈411．50	488	¢0\％	A	1540̈0゙	503i． 50
393	S̈188	Ä	1 1̈ÖÖ $^{\text {a }}$	E̋3̇OB	429	Šiz	Ä			489	938	Ä	1̈®̈Ö	56330̈
3\％	S̈187	Ä	$154030{ }^{\text {a }}$	33430	430	Šiz	Ä	1540̈Ö	323400	403	S\％	Ä	15\％ÖÖ	5714．50
37	Š＇̇\％	Ä	1̈®̈öö	7\％0̈	431	S̈で	Ä	1̈\％̈Ö：		491	3%	Ä		5\％30̈
32	Š1\％	Ä	154000	8170	432	S゙1̆3	Ä	15400	30770	492	¢\％	A	154000	5973
33	S̈184	Ä		\＆̈g̈ob	433	Š2̇4	Ä		з349̈0̈	493	SO4	Ä	1\％\％̈Ö	533930
374	S゙13	Ä	1540300	900	434	S゙ß゙3	Ä	1540̈Ö	3×300	494	\％3	A	1540̈Ö	5803
$3 / 5$	Š12	A		93200	436	Šiz	Ä	167000	Зそ3200	46	\％2\％	A	1̈ד̈ö＇	
36	S̈＇i＇	Ä	1540300	93350	436	Š2̇1	Ä	154000	37430	46	Sió	A	154030	50
3i7	S̈｜̇	Ä		$1035 ె 0]$	437	Š2̇	Ä	1̈̈̈OM	3ँ1150゙	497	S30゙	Ä	1̈ठ̈व̈＇	
378	Su＇is	Ä	$154030{ }^{\text {a }}$	10063 ¢	－	Š119	Ä	1540̈Ö		498	S39	Ä	1540̈Ö＇	
319	Ši̇B＇	Ä	1̈̈̈öö＇	1100803	439	S่＇118	Ä	1̈\％̈Ö＇	З＂	498	S\％8	Ä	1̈ถ̈ö＇	
30	S̈it	Ä	154000	11490	40	S̈17	Ä	15400	30390	50	Sif	A	154000	
381	S̈176	Ä	1̈®̃ö	1193.0	411	S176	Ä	10̈0゙0	303100	90	\％	A		6̈71．0̈
$3{ }^{3}$	S̈ís	Ä	15\％ÖÖ：	123230	42	S̈175	Ä	1540̈Ö	32230	502	Sub	Ä	15\％ÖÖ＇	๕゙2゙230
33	Sıl̆	Ä			43	S゙174	Ä	107000	3／ 6400	53	Sbi	A	1̈®̄Ö	\％ 2400
384	STĭ	Ä	154000	131550］	44	Š13	Ä	154000	3006	304	33	Ä	1540̈Ö	
$3{ }^{3}$	Sit2	Ä	їテ̈Ö：	13\％7．0］	45	S̈112	Ä	107000	3\％	506	S2	A		๙33\％
30	S̈T31	Ä	15300	33885	46	Š111	Ä	1540̈Ö	38880	40	Sif	A	1540\％	ธ3／850
38	STío	Ä		＂̈й0̈	47	S̈10	Ä	1̈¢̈Ŏ	3030］0̈	507	S30	Ä		¢ั¢ 2000
38	S゙®9	Ä	154000	＂48i． 50	48	Š109\％	Ä	154000	3971.50	48	Sig	A	1540゙0	$6{ }^{4} 61.50$
30	S̈＇ß	Ä		15330	$4{ }^{4} 9$	Ši̛B	Ä		4001300	\＄09］	S̈48	A		¢ెß30
300	Š167	A	1540300	135430	450	Šĭ	Ä	154000	406450	510	Sif	A	154000	O\％ 40
391	Š16	Ä	1̈̈ÖÖ	100 OB	451	SiO6	Ä	16700	406800	511	צ\％	A	1̈0̈0̈	¢\％\％Ö
392	S̈16	A	154000	1677	42	ŞÖ	Ä	15400	4137.50	512	Sib	A	154000	$6 \approx 730$
393	S̈ 164	A	1̈®0̈Ö：	1 \％${ }^{\text {a }}$	453	ŞÖ	Ä	16700	417900	513	S4i	A	100000	¢03000
394	Sั¢ై	A	15\％ÖÖ	17303	454	Siö	Ä	1540̈Ö	420030	54	S3i	A	1540̈Ö	6̈10゙50
$3{ }^{3}$	S̈＇̆2	Ä		17120	45	S̈＇̈̈	Ä		$4{ }^{\text {cozzob }}$	515	Š2	Ä	1̈®̈Ö	6＂ 230
306	S̈＇゙	Ä	1540000	1813350	436	Ş1̈O	Ä	1540̈O：	43035	516	Sui	A	1540̈Ö	63930
39	S̈｜̄	Ä	1̈̈̈öö：	1 1̈̈zü $^{\text {a }}$	4	S̈＇̈̈	Ä	1̈\％̈Ö：	433ั5ั¢	517	S̈O	Ä	1̈ธ̈ö＇	\％ั330̈
398	Šis9	Ä	154000	130	458	99	Ä	1540̈Ö	$43030{ }^{\circ}$	518	S39	Ä	15\％ÖÖ	688／630
39	Š153	Ä	1̈¢000：	19380	439	93	Ä	16700	42880	519	\％38	A		
400	Šకె＇	A	1540300	19793 º	407	99	Ä	1540̈Ö	440303	5030	S37	Ä	13¢0̈ÖO	
407	Ši56	Ä	1̈\％000	$20 \geq 100$	461	936	Ä	1\％70̈Ö	4511.00	27	Š6	Ä	1\％7000	ÖOTOO
40	S̈ĭj	Ä	$1{ }^{15} 40{ }^{\text {a }}$	2030	40	9	Ä	1540̈Ö	4 2×20	53	S35	A	1530̈ÖOb＇	＂032゙50
403	Šís	Ä		2̈1040\％	43	9\％4	Ä	1̈\％̈ÖÓ	40̈4̈0̈	53	S34	A		
407	S̈＇33	Ä	$154030{ }^{\text {a }}$	2̈4̄5̈ら̈	464	938	Ä	15゙öÖ＇	$4{ }^{3} 3 \overline{3}{ }^{\circ}$	524	S33	Ä	1540̈Ö＇	7112゙゙ว
46	Ş13	Ä	1̈̈®̈Ö：	2̈8̇．07	466	92	Ä	$1{ }^{160} 0$	4̈ד̇7， 0	53	S32	A	1̈¢̈ÖÖ	7116\％ 0
406	Š151	Ä	$13{ }^{\circ} \mathrm{A}$ Ö	20385	466	99	Ä	1340̈0̈	478180	56	S31	A	154030	70850
407	S̈is	Ä	1̈®̈Ö：	Zัวิ0̈	467	90	Ä	$16 ̈ 000$	$47 /{ }^{\text {coub }}$	37	SัO	A		72300
408	S̈493	A	154000	2311.50	468	\＄98	Ä	1540̈0̈	4001.50	38	Şı	Ä	1540̈Ö：	7291.50
409	S̈4B	Ä	1 1̈ÖÖ：$^{\text {a }}$	23330	409	38	Ä	10700	483300	59	$\stackrel{38}{8}$	Ä	10^{10000}	33300
410	Š47	Ä	153000	23040	40	S87	Ä	154000	4884	50	Sั	A	1540゙0	7334 30
411	S̈4̈＇6	Ä	1̈®̄Ö：	2403000	411	36	Ä	16700	400600	531	56	A	1̈¢000	741600
412	S̈4̇5＇	Ä	15% ÖÖ	24770	42	S\％	Ä	1540̈Ö：	40378	532	Š3	Ä	1540̈Ö	743750
413	S̈ı4	Ä	1̈®0̈0̈	2̈1900	43	S34	Ä	16700	50äö	53	34	Ä	1̈¢000	749900
414	S̈43̇	Ä			474	\＄3\％	Ä	1540̈0゙	500030	334	S23	Ä	15\％ÖÖ＇	7530］
415	S̈42	Ä	1010000	20020	$4 / 5$	92	Ä	16700	509200	53	S2	A	101000	753200
416	S̈i4	Ä	153030	23430	$4{ }^{4} 6$	S8i	Ä	15¢0̈Ö	5133303	56	¢71	A		\％ె2350
417	Š4Ö	A	1̈̈ד̈ӧ	$20030]$	47	¢\％	A	167000	517500	53	¢ัO	A		700\％ 00
418	S̈3̇3＇	Ä		272030］	48	S＂9	Ä	15¢0̈Ö＇	¢376̈ ${ }^{\circ}$	338	S̈＇̆	A		7176̈5̈
419	Ši38	Ä	1010000	$2 \mathrm{Z} \times 800$	49	ST8	Ä	$16{ }^{10000}$	53380	539	Sั̇	A	100000	774800̈
430	ST3＇	A－	15400	24850	480	S／1	A	15400	529950	540	S17	A	154000＇	71850

PnN	PnNare	PadType	X［um］：	Y［ $\mathrm{m}^{\text {l }}$ ］
541	S16	A	16700：	7831.00
＇5⿺辶力	S̈＇5＇	Ä		18230
543	Si4	Ä		791400
－74	Ş3	Ä	1540̈Ö：	795i5i
5	Š2	Ä	1600̆：	797%
［516］	Sั1	Ä	1540̇Ö：	0385
57	ṦO＇	Ä	10000＇	
548	S9＇	Ä	15400：	8121.50
＇519＇	S8	Ä		ชัส゙ญ゙
＂50］	S7	Ä	1540̈0：	8045
	\％	Ä	1600．	¢243000
52	S	Ä	15400：	828.50
菏	S̈＇	Ä		832000
54	S3	Ä	154OȮ：	83015
＇110	S＇	Ä		ชัไ120゙
［170	＇̈＇	Ä	15\％̈Ö＇	
－57	DัMัֵ	Ä		
＂${ }^{\circ}$	DiMM＂	B＇	1＇010	
59	DMM	B	12000	877400
501		B	300T：	87740̈0̈
501	D゙̆̇̈̈	B＇	－46ె0̇1．	873400
－ 50.	DMEN＂	${ }^{\prime}$	－ 1000	＇8／4．0゙＇

3. PIN FUNCTIONS

3.1 Power Supply System Pins

Symbol	Pin Name	Pad No.	I/O	\quad Function
$V_{C C 1}$	Logic power supply	$71,83,84$	-	Power supply pin for logic circuit
$V_{C C 2}$	I/O power supply	57,70	-	Power supply pin for I/O buffer

3.2 Logic System Pins

(1/2)

Symbol	Pin Name	Pad No.	I/O	Function
PSX	CPU interface selection	58		

Symbol	Pin Name	Pad No.	1/0	Function
$\begin{aligned} & \hline D_{0} \text { to } D_{5}, \\ & D_{8} \text { to } D_{15}, \\ & D_{6}(S C L), \\ & D_{7}(S I) \end{aligned}$	Data bus (serial clock) (serial data input)	50 to 35	I/O	These pins comprise 16-bit bi-directional data. When the serial interface has been selected (PSX = L), D_{7} functions as a serial data input pin (SI), D6 functions as a serial clock input pin (SCL). In either case, pins D_{0} to D_{7} and D_{8} to D_{15} are in high impedance mode. When the chip is not selected, D_{0} to D_{15} are in high impedance mode.
RS	Index register/, data/command selection	54	Input	When parallel data transfer has been selected, this pin is usually connected to the least significant bit of the standard CPU address bus and is used to distinguish between data from index registers and data/commands. $\mathrm{RS}=\mathrm{H}$: Indicates that data from D_{0} to D_{15} is data/command $R S=L$: Indicates that data from D_{0} to D_{7} is index register contents Also, when serial data transfer is selected, the level of the RS pin is fetched at the rising edge of the eighth clock of the serial clock and whether the data is index register contents or data/command is distinguished. $\mathrm{RS}=\mathrm{H}$: Indicates that the data input to SI is data/command. $\mathrm{RS}=\mathrm{L}$: Indicates that the data input to SI is index register contents.
IP_{0} to IP_{3}	Input port	$\begin{aligned} & 125,127, \\ & 129,131 \end{aligned}$	Input	This is a general-purpose input port. The status of these pins (H or L) can be read via a command. Because this is a CMOS input, do not leave open.
OPo to OP_{7}	Output port	116 to 123	Output	This is a general-purpose output port. The status of these pins (H or L) can be write via a command. Leave open when in unused.
Rsel	Oscillation signal select	28	Input	This pin is for oscillation signal selection. When in used external resistance connection oscillator circuit, this pin set H . When in used internal oscillator circuit, this pin set L . RseL $=\mathrm{H}$: External resistance connection oscillator circuit select Rsel = L: CR internal oscillator circuit select
OSCin	Oscillation signal	32	Input	This pin is for oscillation signal input. Rsel $=\mathrm{H}$: Connect $51 \mathrm{k} \Omega$ resistance between OSCIn and OSCout. Rsel = L: Leave open
OSCout	Oscillation signal	30	Output	This pin is for oscillation signal input. Rsel $=\mathrm{H}$: Connect $51 \mathrm{k} \Omega$ resistance between OSCin and OSCout. Rsel = L: Leave open
CSTB	GSTB logic signal	34	Output	This pin outputs STB signal for gate driver leveled by interface power supply voltage ($\mathrm{V}_{\mathrm{cc} 2}$). This output signal is reverse signal of GSTB.

3.3 Gate Driver IC Control Pins

Symbol	Pin Name	Pad No.	I/O	Function
LPMG	Low power mode signal	138	Output	This is an output pin for low power mode (for the gate driver). Connect to the LPM pin of the gate driver.
GOE_{1}	OE 1 output for gate driver	135	Output	This pin is an output pin for the low power mode (for the OE_{1}). Connect to the OE_{1} pin of the gate driver. Timing signal for output, refer to 5.4 Display timing generator.
GOE 2	OE2 output for gate driver	136	Output	This pin is the OE_{2} output for the gate driver. Connect to the OE_{2} pin of the gate driver. Timing signal for output, refer to 5.4 Display timing generator.
GSTB	STB output for gate driver	133	Output	This pin is the STB output for the gate driver. Connect to the STVR or STVL pin of the gate driver. Timing signal for output, refer to 5.4 Display timing generator.
GCLK	CLK output for gate driver	134	Output	This pin is the CLK output for the gate driver. Connect to the CLK pin of the gate driver.
RGONG	Regulator control	137	Output	Regulator ON/OFF control of gate driver IC Connect to the RGONG pin of the gate driver.

3.4 Power Supply Control Pins

Symbol	Pin Name	Pad No.	I/O	Function
LPMP	Low power mode signal	65	Output	Low power mode control signal output pin (for power-supply IC). This pin connects to LPM pin of power-supply IC.
DCON	DC/DC converter control	67	Output	DC/DC converter ON/OFF signal pin for power-supply IC. This pin connects DCON pin of power-supply IC.
RGONP	Regulator control	66	Output	Regulator ON/OFF control signal pin for power-supply IC. This pin connects to RGONP pin of power-supply IC.
$\mathrm{V}_{\text {cD11, }} \mathrm{V}_{\text {CD12 }}$	VDD1 booster selection	64, 63	Output	Control signal to select $\times 4 / \times 5 / \times 6 / \times 7$ booster of power-supply IC for Vcc 1 . Connect to the $\mathrm{V}_{\text {CD11 }}$ and $\mathrm{V}_{\text {CD12 }}$ pins of the power-supply IC.
$\mathrm{V}_{\mathrm{CD} 2}$	VDD2 booster selection	62	Output	Control signal to select x2/x3 booster of power-supply IC for Vcc2. Connect to the VCD2 pin of the power-supply IC.
Vce	Vo level selection	61	Output	Signal for selecting the level of the power-supply IC booster voltage, to be used for the maximum voltage of Vo. Selects that the booster voltage level is either the same level as V_{DD} or a multiple of minus 1. Connect to the $\mathrm{V}_{\text {CE }}$ pin of the power-supply IC.

3.5 Driver-Related Pins

Symbol	Pin Name	Pad No.	I/O	Function
S_{1} to S_{396}	Source output	556 to 365, 352 to 149	Output	Source output pins
VCOM	COM adjustment	85	Output	This pin is the common adjustment output.
VCOUT1	Center rectangle signal output	81, 82	Output	This pin is the center rectangle signal output $\left(\mathrm{V}_{\mathrm{p}-\mathrm{p}}\right)$ for common modulation between 0 V to V s.
VCOUT2	Center rectangle signal output	68	Output	This pin is the center rectangle signal output $\left(\mathrm{V}_{\mathrm{p}-\mathrm{p}}\right)$ for common modulation between 0 V to Vcc .
BGRIN	External-power- supply connect	90	Input	This is an external-power-supply connect pin for VCOM. This pin is valid when BGRS (power supply control register 1: R25) = 1. In this case, the reference voltage of the amplifier for setting the common waveform center value is input from outside the μ PD161622 When BGRS $=0$, power supply with built-in the μ PD161622 is set up as a standard voltage for common waveform center value setup. In this case, leave it open. For more detail, refer to 5.5 Common Adjustment.
VCOMR	VCOM setting resistor connection	89	Input	Connects an external feedback resistor for VCOM setting. This pin is valid when FBRsel $=\mathrm{L}$. In this case, connect a feedback resistor between the VCOM pin and GND. When FBRsel $=\mathrm{H}$, the amplifier for setting the common waveform center value operates as a voltage follower. In this case, leave it open. For more detail, refer to 5.5 Common Adjustment.
FBRsel	VCOM setting external circuit select	92	Input	This pin is used to select the method of adjusting the amplifier for setting the common waveform center value used to set the COMMON drive waveform center level. ```FBRsEL = H: Voltage follower circuit used (VCOMR connected to VCOM internally) FBRseL = L: External feedback resistor used```
CVPH, CVPL, CVNH, CVNL	Basis power supply for γ-corrected power supplies	$\begin{aligned} & 77, \\ & 76, \\ & 75, \\ & 74 \end{aligned}$	-	This is operational amplifier output pin for the γ-corrected power supplies. Normally, this pin connects capacitor of $1 \mu \mathrm{~F}$
DAC_{0} to DAC_{7}	D/A converter value setting	114 to 107	Input	These pins set the reference voltage of the amplifier for setting the VCOM value used to set the COMMON drive waveform center level. These pins are valid when the VCOM output center value setting register $($ R29 $)=00 \mathrm{H}$ and BGRS $\left(\right.$ R25: $\left.D_{6}\right)=0$. This pin is pulled up to the inside IC, therefore, connect to only Vss when in low level setting pin. For more details, refer to 5.5 Common Adjustment Circuit.

3.6 Test or Other Pins

Symbol	Pin Name	Pad No.	1/0	Function
TOUTo to TOUT ${ }_{15}$, TOSCO	Source output	$\begin{aligned} & 19 \text { to } 4, \\ & 26 \end{aligned}$	Output	This is output pin when μ PD161622 is in test mode. Normally, leave it open.
TSTRTST, TSTVIHL, TOSCI, TOSCSELI, TOSCSELO, TBSEL1, TBSEL2	COM adjustment	$\begin{aligned} & \hline 22, \\ & 21, \\ & 25, \\ & 24, \\ & 23, \\ & 104, \\ & 105 \end{aligned}$	Output	These pins are to set up test mode of μ PD161622. Normally, fixed it to Vss.
TBGR	Test input/output	106	I/O	This is output pin when μ PD161622 is in test mode. Normally, leave it open.
DUMMY	Dummy pin	1 to $3,86,87,139$ to 148,353 to 364 , 557 to 562	-	Dummy pin The dummy pins of pads No. 1, 2, 557, and 558 are wired using aluminum inside the μ PD161622. The dummy pins of pads No. 140, 141, 146, and 147 are wired using aluminum inside the μ PD161622.

4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

The I/O circuit types of each pin and recommended connection of unused pins are described below.

Pin Name	Input Type	I/O	Power supply	Recommended Connection of Unused Pins		Notes
				Parallel Interface	Serial Interface	
PSX	Schmitt trigger	Input	Vcc2	Mode setting pin		1
/RESET	Schmitt trigger	Input	Vcc2	Always reset on power application		-
/RD (E)	Schmitt trigger	Input	Vcc2	Connect to Vcc2 (when i80 series interface)	Connect to Vcc2 or Vss.	-
C86	Schmitt trigger	Input	Vcc2	Mode setting pin	Connect to Vcc2 or Vss.	1
Do to D_{5}	Schmitt trigger	1/0	Vcc2	-	Leave open	-
D_{6} (SCL)	Schmitt trigger	1/0	Vcc2	-		-
$\mathrm{D}_{7}(\mathrm{SI})$	Schmitt trigger	1/0	Vcc2	-		-
D_{8} to D_{15}	Schmitt trigger	1/0	Vcc2	-	Leave open	-
RS	Schmitt trigger	Input	Vcc2	Register setting pin		2
IP 0 to IP_{3}	Schmitt trigger	Input	Vcc1	Connect to Vcc1 or Vss.		-
OP_{0} to OP_{7}	-	Output	Vcc1	Leave open		-
OSCIn	CMOS	Input	Vcc2	Input external clock (RseL $=\mathrm{H}$) Leave open (Rsel $=\mathrm{L}$)		-
OSCout	CMOS	Output	Vcc2	Leave open (Rsel $=\mathrm{H} / \mathrm{L}$)		-
CSTB	-	Output	Vcc2	Leave open		-
RseL	Schmitt trigger	Input	Vcc1	Mode setting pin		3
LPMG	-	Output	Vcc1	Leave open		-
GOE_{1}	-	Output	Vcc1	Always connect to the gate driver		-
GOE_{2}	-	Output	Vcc1	Always connect to the gate driver		-
GSTB	-	Output	Vcc1	Always connect to the gate driver		-
GCLK	-	Output	Vcc1	Always connect to the gate driver		-
RGONG	-	Output	Vcc1	Always connect to the gate driver		-
LPMP	-	Output	Vcc1	Leave open		-
DCON	-	Output	Vcc1	Always connect to the power IC		-
RGONP	-	Output	Vcc1	Always connect to the power IC		-
$\mathrm{V}_{\text {cD11, }} \mathrm{V}_{\text {cD12 }}$	-	Output	Vcc1	Always connect to the power IC		-
$\mathrm{V}_{\text {CD2 }}$	-	Output	Vcc1	Always connect to the power IC		-
Vce	-	Output	Vcc1	Always connect to the power IC		-
VCOUT1	-	Output	Vs	Leave open		-
VCOUT2	-	Output	Vcc1	Leave open		-
BGRIN	-	Input	Vs	Leave open (BGRS = L [R25])		-
Vcom	-	Output	Vs	Leave open (FRBsel = H)		-
VCOMR	-	Input	V_{s}	Leave open (FRBsel $=$ H)		-
TOUT $_{0}$ to TOUT ${ }_{15}$	-	Output	Vcc1	Leave open		-
TOSCO	-	Output	Vcc 1	Leave open		-
TSTRTST	-	Input	Vcc1	Connect to Vss.		-
TSTVIHL	-	Input	Vcc1	Connect to Vss.		-
TOSCI	-	Input	Vcc1	Connect to Vss.		-
TOSCSELI	-	Input	Vcc1	Connect to Vss.		-
TOSCSELO	-	Input	Vcc1	Connect to Vss.		-
TBSEL1	-	Input	Vcc1	Connect to Vss.		-
TBSEL2	-	Input	Vcc1	Connect to Vss.		-
TBGR	-	1/0	Vcc1	Leave open		-

Notes 1. Connect to Vcc 2 or Vss , depending on the mode selected.
2. Input either H or L by CPU, depending on the register selected
3. Connect to Vccc_{1} or Vss, depending on the mode selected.

5. DESCRIPTION OF FUNCTIONS

5.1 CPU Interface

5.1.1 Selection of interface type

The μ PD161622 chip transfers data using a 16-bit bi-directional data bus (D_{15} to D_{0}), 8-bit bi-directional data bus (D_{7} to D_{0}) or a serial data input (SI). Setting the polarity of the PSX pin as either H or L enables the selections shown in table 5-1 below.

Table 5-1.

PSX	BMD	Mode	/CS	RS	/RD (E)	/WR (R,/W)	C86	D_{15} to D_{8}	D_{7}	D_{6}	D_{5} to D_{0}
H	0	16-bit parallel	/CS	RS	/RD (E)	/WR (R,/W)	C86	D_{15} to D_{8}	D_{7}	D6	D_{5} to D_{0}
H	1	8-bit parallel	/CS	RS	/RD (E)	/WR (R,/W)	C86	$\mathrm{Hi}-\mathrm{Z}^{\text {Note1 }}$	D_{7}	D_{6}	D_{5} to D_{0}
L	$\mathrm{X}^{\text {Note2 }}$	Serial ${ }^{\text {Note3 }}$	/CS	RS	Note2	Note2	Note2	$\mathrm{Hi}-\mathrm{Z}^{\text {Note1 }}$	SI	SCL	$\mathrm{Hi}-\mathrm{Z}^{\text {Note1 }}$

Notes 1. Hi-Z: High impedance
2. X: Don't care (1 or 0)
3. In serial mode, read function is not available.

5.1.2 Parallel interface

When the parallel interface has been selected (PSX $=H$), setting the C86 pin as either H or L enables a direct connection to an i80 series or M68 series CPU (see table 5-2 below).

Table 5-2.

C 86	Mode	$/ R D(E)$	$/ W R(R, / W)$
H	M68 series CPU	E	$R, / W$
L	i80 series CPU	$/ R D$	$/ W R$

The data bus signal is identified according to the combination of the RS, /RD (E), and /WR (R, /W) signals, as shown in the following table 5-3.

Table 5-3.

Common	M68 series CPU	i80 series CPU		Function
RS	R, /W	/RD	/WR	
H	H	L	H	Read display data and registers
H	L	H	L	Write display data and registers
L	H	L	H	Prohibited
L	L	H	L	Write to control index register

Moreover, when using the parallel interface, it is possible to use the BMD flag (D_{7} of the data access control register (R5) to select the length of the data to be transmitted as either 16 bits $(B M D=0)$ or 8 bits (BMD $=1$). This setting is valid for the display data written as DR data to the display memory register (R12).
The relationship between the command input and the data bus length is as follows.

- Commands other than those of the display memory register (R12) are executed in 1-byte units regardless of the value of BMD (bus length setting flag in data access control register (R5)).
- Display memory register (R12) commands are executed in 1-byte units when BMD $=1$, and in 1-word units when $\mathrm{BMD}=0$.
(1) Commands other than those of the display memory register (R12)

BMD = 1 (8-bit data bus)

Pin	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
Data	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

BMD = 0 (16-bit data bus)

Pin	D_{15}	D_{14}	D_{13}	D_{12}	D_{11}	D_{10}	D_{9}	D_{8}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D 0
Data	Note	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D 0							

Note 0 or 1
(2) Display memory register (R12)

BMD = 1 (8-bit data bus)

Pin	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
Data	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

BMD $=0$ (16-bit data bus)

Pin	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do
Data	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do

Relationship data bus and display RAM (16-bit parallel interface: BMD = 0)

Data bus side

16 bit															
DB_{15}	DB14	DB_{13}	DB_{12}	DB_{11}	DB_{10}	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
D_{15}	D_{14}	D_{13}	D_{12}	D_{11}	D_{10}	D9	D8	D_{7}	D6	D_{5}	D_{4}	D_{3}	D_{2}	D 1	D0
Dot 1					Dot 2						Dot 3				
1 pixel (= 1X address)															

Display RAM side

Relationship data bus and display RAM (18-bit parallel interface: BMD = 1)

Data bus side

8 bit (1st byte)								8 bit (2nd byte)							
DB7	DB6	DB5	DB4	DB_{3}	DB2	DB1	DB0	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
D15	D14	D13	D_{12}	D11	D10	D9	D8	D_{7}	D6	D5	D4	D3	D2	D1	Do
Dot 1					Dot 2						Dot 3				
1 pixel ($=1 \mathrm{X}$ address)															

Display RAM side

Figure 5-1. Example of 16-bit Data Access (i80 series interface, BMD = 0)

Figure 5-2. Example of 8-bit Data Access (i80 series interface, BMD = 1)

(1) i80 Series Parallel Interface

When i80 series parallel data transfer has been selected, data is written to the μ PD161622 at the rising edge of the /WR signal. The data is output to the data bus when the /RD signal is L.

Figure 5-3. 180 Series Interface Data Bus Status

(2) M68 Series Parallel Interface

When M68 series parallel data transfer has been selected, data is written at the falling edge of the E signal when the $R, / W$ signal is L. In a data read operation, data is output at the rising edge of the E signal in a period when the R,/W signal is H . The data bus is released $(\mathrm{Hi}-\mathrm{Z})$ at the falling edge of the E signal.

Figure 5-4. M68 Series Interface Data Bus Status (when data read)
/CS

R,/W

E

5.1.3 Serial interface

When the serial interface has been selected ($\mathrm{PSX}=\mathrm{L}$), if the chip is active ($/ \mathrm{CS}=\mathrm{L}$), serial data input (SI) and serial clock input (SCL) can be received. Serial data is read from D_{7} and then from D_{6} to D_{0} on the rising edge of the serial clock, via the serial input pin. This data is synchronized on the eighth serial clock's rising edge and is then converted to parallel data for processing.

RS input is used to judge serial input data as display data or command data when $\mathrm{RS}=\mathrm{H}$ the data is display data and when $R S=L$ the data is command data. When the chip enters active mode, RS input is read at the rising edge after every eighth serial clock and is then used to judge the serial input data. The serial interface signal chart is shown below.

Figure 5-5. Serial Interface Signal Chart

Remarks 1. If the chip is not active, the shift register and counter are reset to their initial settings.
2. The data read function is disabled during serial interface mode.
3. When using SCL wiring, take care concerning the possible effects of terminating reflection and noise from external sources. Our recommends checking operation with the actual device.

5.1.4 Chip select

The μ PD161622 has two chip select pins (/CS). The CPU parallel and serial interfaces can be used only when /CS $=L$. When the chip select pin is inactive, D_{0} to D_{15} are set to high impedance (invalid) and input of RS, /RD, or /WR is not active. If a serial interface mode has been set, the shift register and counter are both initialized.

5.1.5 Access to display data RAM and internal registers

When the CPU accessed the μ PD161622, the CPU only has to satisfy the requirement of the cycle time (tcyc) and can transfer data at high speeds. Usually, it is not necessary for the CPU to take wait time into consideration. A high-speed RAM write function, as well as the ordinary RAM write function, is provided for writing data to the display data RAM. By using the high-speed write function, data can be written to the display RAM at an access speed four times faster than that of the ordinary RAM write function. Therefore, applications, such as motion picture display where the display data must be rewritten at high speeds, can be supported. For details, refer to 5.2.5 High-speed RAM write mode
Dummy data is not required when either reading or writing data. In the μ PD161622, data of the display memory register (R12) cannot be read. This relationship is shown in Figure 5-6.
Note that when in write mode of data at high speed for data read mode of read cycle time, this mode equals to normal mode.

Figure 5-6. Image of internal access to display RAM

Writing

Reading (display memory register)

Reading (registers other than display memory register)

5.2 Display Data RAM

This RAM stores dot data for display and consists of 2,112 bits $(132 \times 16) \times 176$ bits. Any address of this RAM can be accessed by specifying an X address and an Y address.
Display data Do to D15 transmitted from the CPU corresponds to the pixels on the LCD (refer to Table 5-5).

Table 5-5. Display Data RAM

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do
Dot 1					Dot 2						Dot 3				
Pixel 1 (= $1 \times$ address)															

5.2.1 X address circuit

An X address of the display data RAM is specified by using the X address register as shown in Figure 5-8. If the X address increment mode (INC $=0$: data access control register: R5) is used, the specified X address is incremented or decremented by one each time display data is written. Whether the address is incremented or decremented is specified by the XDIR flag of data access control register (R5) as shown in Table 5-6.
In the increment mode, the X address is incremented up to 83 H . If more display data is written, the Y address is incremented $($ YDIR $=0)$ or decremented (YDIR $=1$), and the X address returns to 00 H .
In the decrement mode, the X address is decremented to 00 H . If more display data is written, the Y address is incremented $($ YDIR $=0)$ or decremented $(Y D I R=1)$, and the X address returns to 83 H .

5.2.2 Y address circuit

A Y address of the display data RAM is specified by using the Y address register as shown in Figure 5-8. If the Y address increment mode (INC = 1: data access control register: R5) is used, the specified Y address is incremented or decremented by one each time display is written. Whether the address is incremented or decremented is specified by the YDIR flag of data access control register (R5) as shown in Table 5-6.
In the increment mode, the Y address is incremented up to AFH. If more display data is written, the X address is incremented ($\mathrm{XDIR}=0$) or decremented ($\mathrm{XDIR}=1$), and the Y address returns to 00 H .
In the decrement mode, the Y address is decremented to 00 H . If more display data is written, the X address is incremented (XDIR $=0$) or decremented (XDIR = 1), and the Y address returns to AFH.
The relationship between the setting of INC, XDIR, and YDIR of data access control register (R5) and the address is as follows:

Table 5-6. Data Access Control Register (R5) Setting

INC	Setting
0	The address is successively incremented or decremented in the X direction when data is accessed.
1	The address is successively incremented or decremented in the Y direction when data is accessed.

XDIR	Setting
0	Increments the X address (+1) when data is accessed.
1	Decrements the X address (-1) when data is accessed.

YDIR	Setting
0	Increments the Y address (+1) when data is accessed.
1	Decrements the Y address (-1) when data is accessed.

Table 5-7. Combination of INC, XDIR, and YDIR, and Address Direction

INC	XDIR	YDIR	Image of Address Scanning
0	0	0	$\mathrm{~A}-1$
	0	1	$\mathrm{~A}-2$
	1	0	$\mathrm{~A}-3$
	1	1	$\mathrm{~A}-4$
	0	0	$\mathrm{~B}-1$
	0	1	$\mathrm{~B}-2$
	1	0	$\mathrm{~B}-3$
	1	1	$\mathrm{~B}-4$

Caution If the access direction is changed by using INC, XDIR, or YDIR, be sure to set the X address register (R 6) and Y address register (R7) before accessing the display RAM.

Figure 5-7. Combination of INC, XDIR, and YDIR, and Address Scanning Image

5.2.3 Column address circuit

When the contents of the display data RAM are displayed, column addresses are output to the SEG output pins as shown in Figure 5-8.

The correspondence relationship between the column addresses of the display RAM and segment outputs can be reversed by the ADC flag (segment driver direction select flag) of control register $1(\mathrm{RO})$ as shown in Table 5-8. This reduces the restrictions on chip layout when the LCD module is assembled.

Table 5-8. Relationship between Column Address of Display RAM and Segment Output

SEG Output		SEG $_{1}$	SEG $_{2}$	\rightarrow	SEG $_{385}$	SEG $_{386}$		
ADC	0	000 H	000 H	\rightarrow	Column address	\rightarrow	18 AH	18 BH
	1	18 BH	18 AH	\leftarrow	Column address	\leftarrow	001 H	000 H

Figure 5-8. μ PD161622 RAM Addressing

5.2.4 Arbitrary address area access (window access mode (WAS))

With the μ PD161622, any area of the display RAM selected by the MIN.. $\cdot \mathrm{X} / \mathrm{Y}$ address registers (R8 and R10) and MAX. X/Y address registers (R 9 and R11) can be accessed.
$\star \quad$ A setup of data access control (R5): WAS $=1$ chooses window access mode. And μ PD161622 accesses only the domain set up by MIN. X/Y address registers and MAX. X/Y address registers. The address scanning setting by INC, XDIR, and YDIR of data access control register (R5) is also valid in window access mode, in the same manner as when data is normally written to the display RAM. In addition, data can be written from any address by specifying the X address register (R6) and Y address register (R7).
Note that the display RAM must be accessed after setting the X address register (R6) and Y address register (R7) if the window access area has been set or changed by the MIN. X/Y address register or MAX. X/Y address register.

Figure 5-9. Example of Incrementing Address When $\operatorname{INC}=0, X D I R=0$, and $Y D I R=0$

Cautions 1. When using the window access mode, the relationship between the start point and end point shown in the table below must be established.

Item	Address Relation Ship
X address	$00 \mathrm{H} \leq$ MIN. $\cdot \mathrm{X}$ address $\leq X$ address (R4) MAX. X address $\leq 83 \mathrm{H}$
Y address	$00 \mathrm{H} \leq$ MIN. \cdot Y address $\leq Y$ address (R5) MAX. Y address \leq AFH

2. If invalid address data is set as the MIN./MAX. address, operation is not guaranteed.
3. Do not specify any value other than the address value $4 n-n(n=1$ to 33$)$ for the X address in the high-speed RAM access mode. The operation is not guaranteed if invalid address data is set.
4. Access the display RAM after setting the X address register (R6) and Y address register (R7) if the window access area has been set or changed by the MIN. X/Y address register or MAX. X/Y address register.

Figure 5-10. Example of Sequence in Window Access Mode

5.2.5 High-speed RAM write mode

With the μ PD161622, two types of access modes can be selected for accessing the display RAM.
The μ PD161622 has a high-speed RAM write function, as well as an ordinary RAM write function. By using the highspeed write function, data can be written to the display RAM at an access speed four times faster than that of the ordinary RAM write function. Therefore, applications, such as motion picture display where the display data must be rewritten at high speeds, can be supported.
When the high-speed RAM write mode is selected by using BSTR of the data access control register (R5), data is temporarily stored in an internal register of the μ PD161622.

When data of 64 bits (16 bits $\times 4$) has been stored in the register, it is written to the display RAM. It is also possible to write the next data to the internal register while the first data is being written to the RAM.
In the high-speed RAM write mode, however, the CPU must transmit data in units of 64 bits (4 pixels) have been written to the internal register. If data of less than 64 bits is transmitted in the high-speed RAM write mode, this data is not written to the display RAM. Therefore, CPU data is not reflected on the LCD display even if it is transmitted. In this case, the data that is not reflected remains stored in the register. When the next data is transmitted, it is written to the register from where the preceding data is stored. However, if the chip select signal is disserted inactive (/CS $=\mathrm{H})$ in the middle of data transfer, and then asserted active again and when the display data register (R12) is set, the register is initialized. Consequently, the data stored in the register is lost.
It is therefore recommended to transmit display data in 64-bit units when using the high-speed RAM write mode.

Figure 5-11. Image of Operation in High-speed Write Mode

Caution Do not specify any value other than the address value $4 n-n(n=1$ to 33$)$ for the X address (R6) in the high-speed RAM access mode. The operation is not guaranteed if invalid address data is set.

Figure 5-12. Example of Sequence in High-Speed RAM Write Mode (with 16-Bit Parallel Interface)

Note Do not specify any value other than the address value $4 n-n(n=1$ to 33$)$ for the X address (R6) in the high-speed RAM access mode. The operation is not guaranteed if invalid address data is set.

5.3 Oscillator

The μ PD161622 has a CR oscillator (with external R), which generate the display clock. When RseL is L , an internal CR oscillator is selected. Leave both OSCIn pin and OSCout open. When RsEL is H, an external oscillator is selected. \star Connect $51 \mathrm{k} \Omega$ resistance between OSCIN and OCSout pin.

This oscillator also has a calibration function, which is available by itself to set the number of frame frequency of display driving. Frame frequency calibration is set by calibration register (R45). The time to select one line is set by the calibration start and stop commands.

Figure 5-13. Frame Frequency Calibration

The calibration function involves counting the number of oscillation clocks generated between the start and stop signals and storing that number in a register. The number of oscillation clocks is then continually compared with this register value in subsequent operations, and the time of the clock number stored in the register is set as 1 line selection time, and used as the internal reference clock.
Using the time to set calibration (tcal) can be selected either tcal or tcal x 2 through control register (R1): LTS.

Figure 5-14. Calibration Function Timing (LTS [R1] = 0)

5.4 Display Timing Generator

5.4.1 Drive timing

The μ PD161622 generates the TFT-LCD drive timing inside the μ PD161622. The TFT-LCD panel is driven at the timing of one line selection period generated based on the calibration time (tcal) set by the calibration function, as shown in the figure below. One line selection period is made up of a pre-charge period, a source output period, and the μ PD161622 output control clock. The pre-charge and source output periods are set by the pre-charge period setting register (R46) and calibration register (R45), respectively, based on the following expressions.

1 line selection period = tcal
Pre-charge period $=$ tpr
Source output period $=$ tsout
tcal: Calibration setting time [R45]
$t_{p r}=(1 / f o s c) \times\left(C L K_{p r}+2\right.$ CLK $)$
tsout $=$ tcal $^{-}(\mathrm{t}$ pr +3 CLK $)$

CLK cal: Calibration setting time (tcal) clock number $=$ tcal $\div(1$ fosc $)$
CLKpr: Pre-charge peiod setting register clock number [R46: PLIMn] n
1 CLK = 1/fosc
fosc: Oscillator frequency

Figure 5-15. 1-line Select Time

The display timing generator generates the timing signals for the internal timing of the source driver and for the gate driver. The output timings for normal operation, for normal operation \rightarrow stand-by mode, and for stand-by mode \rightarrow normal operation, are shown below.

Figure 5-16. During Normal Operation (during line inversion)

Figure 5-17. Normal Operation \rightarrow Stand-by Input (during line inversion)

Figure 5-18. Normal Operation \rightarrow Stand-by Input (during line inversion) (1) Reference

Figure 5-19. Normal Operation \rightarrow Stand-by Input (during line inversion) (2) Reference

Figure 5-20. Stand-by \rightarrow Return to Normal Operation (during line inversion)

5.5 Common Adjustment Circuit

To generate common output, the center voltage of the common waveform is output from the VCOM pin along with output of a 0 to $\mathrm{Vs}(\mathrm{V})$ square waveform from the VCOUT1 pin and 0 to $\mathrm{Vccc}_{1}(\mathrm{~V})$ from VCOUT2. The level of the VCOM output can be adjusted using as external resistor.

Figure 5-21. Common Adjustment Circuit

The VCOM voltage formulas are shown below.
<When internal power supply is used 1 (BGRS [D6] of R25 $=0, \mathrm{PVCOM}\left(\mathrm{D}_{3}\right)=0$)>
COM voltage $=(1+\mathrm{R} 1 / \mathrm{R} 2) \times \mathrm{VBGR} \times(\alpha \div 256)$
VBGR = 3.0 V TYP.
$\alpha=$ VCOM electronic volume register [R29]
<When internal power supply is used 2 (BGRS [D6] of R25 = 0, PVCOM (D3) = 1)>
COM voltage $=(1+\mathrm{R} 1 / \mathrm{R} 2) \times \mathrm{Vs} \times(\alpha \div 256)$
$\alpha=$ VCOM electronic volume register [R29]
<When external power supply is used (BGRS [D6] of R25 = 1)>
COM voltage $=(1+$ R1/R2 $) \times$ VBGRIN
VBGRIN = external power supply voltage (voltage input from BGRIN)
<Recommended values for R1 to R3, and C1>
Use the values listed below as a guideline. The user is responsible for ultimately determining the resistance values and recommended values based on careful evaluation on actual panels.

R1: 200 K
R2: 51 to 100 K
R3: 51 to 100 K
C1: $10 \mu \mathrm{~F}$

5.6 Rectangular Signal Generator

This circuit generates a common rectangular signal. A rectangular wave of 0 to $\mathrm{Vs}(\mathrm{V})$ is output from the VCOUT1 pin, and a wave of 0 to $\mathrm{Vcc1}^{\mathrm{C}}(\mathrm{V})$ is output from the VCOUT2 pin. The common output wave necessary for driving an LCD can be generated by connecting an external circuit as shown in Figure 5-21.

5.7 Reference Voltage Generator (VBGR)

The μ PD161622 has a reference voltage generator for the voltage regulator. This reference voltage generator generates a constant voltage from Vcc 1 . The constant voltage generated by this circuit is connected to the input of the operational amplifier that adjusts the center level of the COMMON drive output, via a D/A converter.
By using this voltage, therefore, the center level of the COMMON drive output can be kept constant, without being affected by fluctuations in the supply voltage.
The common output waveform necessary for driving an LCD can be generated by connecting the external circuit show in Figure 5-21.

When the internal reference voltage generator is not used (R 25 : $B G R S=1$), directly input the reference voltage to the operational amplifier that adjusts the center level of the COMMON drive output.

5.8 D/A Converter Circuit

The μ PD161622 is provided with an internal D/A converter to adjust the voltage of the reference voltage generator for the voltage regulator. This D/A converter divides the constant voltage generated by the reference voltage generator (VBFR) by 256, and a level of voltage between VBGR and Vss can be selected by setting the VCOM electronic volume register (R29).
In addition, this D/A converter also has a function to select a level by using an external pin. If the set value of the VCOM electronic volume register (R29) is 00 H , the set statuses of the DAC_{7} to DAC_{0} pins are valid.
When DACn pin input is valid $(\mathrm{R} 29=00 \mathrm{H})$, these pins are pulled up internally, so only the pins that are to be set to L should be connected to Vss.

Table 5-9. α Setting of VCOM Electronic Volume Register (R25: BGRS = 0)

	EV_{7}	EV6	EV5	EV_{4}	EV_{3}	EV_{2}	$E V_{1}$	$E V_{0}$	α	Remark
	DAC_{7}	DAC6	DAC5	DAC_{4}	DAC_{3}	DAC_{2}	DAC_{1}	DAC0		
OOH	0	0	0	0	0	0	0	0	DACn set value	R29
									0	DACn
01H	0	0	0	0	0	0	0	1	2	
02H	0	0	0	0	0	0	1	0	3	
03H	0	0	0	0	0	0	1	1	4	
\downarrow				\downarrow					\downarrow	
FEH	1	1	1	1	1	1	1	0	255	
FFH	1	1	1	1	1	1	1	1	256	

5.9γ-Curve Correction Power Supply Circuit

The μ PD161622 includes a γ curve correction power supply circuit. If the internal γ curve correction matches the LCD characteristics, no external components are necessary. This power circuit has white level and black level reference voltage generators on the positive and negative polarity sides, and also supports unbalanced driving. The reference voltage generators consist of a D/A converter and an operational amplifier and divide Vs to Vss by 256. One level of voltage can be selected by using the contrast value setting registers (R36 to R39)

Figure 5-22. γ-Curve Correction Circuit

Figure 5-23. Relationship of TFT Drive Voltage (normally white)

	Drive level	Setting register	
VPH	Positive polarity, black	Contrast value setting register 1	R36
VNH	Negative polarity, white	Contrast value setting register 2	R37
VPL	Positive polarity, black	Contrast value setting register 3	R38
VNL	Negative polarity, white	Contrast value setting register 4	R39

The value of each amplifier output can be expressed as follows and the value of β can be set as shown in Table 510 and 5-11by using the contrast value registers (R36 to R39)

VNL, BVPL, VNH, VPH $=(\beta \div 256) \times$ Vs

Caution The usable range in which each output level of VPH, VNH, VPL, and VNL can be set depends on the γ-curve.

Table 5-10. γ-Contrast Value Setting and Electronic Volume Register β Setting 1 (VPH, VNL)

R36	GPH7	GPH6	GPH5	GPH4	GPH3	GPH2	GPH1	GPH0	β value setting or status setting
R37	GNH7	GNH6	GNH5	GNH4	GNH3	GNH2	GNH1	GNH0	Fixed to Vs (amplifier OFF)
$00 H$	0	0	0	0	0	0	0	0	255
01H	0	0	0	0	0	0	0	1	254
02H	0	0	0	0	0	0	1	0	253
03H	0	0	0	0	0	0	1	1	\downarrow
\downarrow				\downarrow					2
FEH	1	1	1	1	1	1	1	0	1
FFH	1	1	1	1	1	1	1	1	

Table 5-11. γ-Contrast Value Setting and Electronic Volume Register β Setting 1 (VPL, VNL)

R36	GPL7	GPL6	GPL5	GPL4	GPL3	GPL2	GPL1	GPLO	β value setting or
R37	GNL7	GNL6	GNL5	GNL4	GNL3	GNL2	GNL1	GNLO	Statement setting
00H	0	0	0	0	0	0	0	0	Fixed to Vs (amplifier OFF)
01H	0	0	0	0	0	0	0	1	255
02H	0	0	0	0	0	0	1	0	254
03H	0	0	0	0	0	0	1	1	253
\downarrow				\downarrow					\downarrow
FEH	1	1	1	1	1	1	1	0	2
FFH	1	1	1	1	1	1	1	1	1

Relationship between Setting Value of R36 to R39 Registers and Switch Status (GseL[R1] =1)

Register	Setting value	Switch Status		Amplifier
R36	OOH	SR36	ON	OFF
	Other than 00 H		OFF	ON
R37	OOH	SR37	ON	OFF
	Other than 00 H		OFF	ON
R38	OOH	SR38	ON	OFF
	Other than 00 H		OFF	ON
R39	OOH	SR39	ON	OFF
	Other than 00 H		OFF	ON

The relationship between the setting of the contrast value setting register and the driven waveform is explained next, taking the γ-curve in Figure 5-22 as an example.

Table 5-12. Switch Status when γ-Curve Correction Power Supply Circuit is not used (Gsel[R1] =0)

Polarity	Switch status								
	SPH1	SNL1	SNH 1	SPL 1	SPH 2	SNL2	SNH2	SPL2	
Positive	x	x	x	x	ON	OFF	OFF	ON	
Negative	x	x	x	x	OFF	ON	ON	OFF	

Remark x : Switch is normally OFF with the amplifier OFF.

Relationship of drive voltage (normally white)

Table 5-13. Switch Status when γ-Curve Correction Power Circuit is used (GseL[R1] =1)

Polarity	Switch status							
	SPH1	SNL1	SNH1	SPL1	SPH2	SNL2	SNH2	SPL2
Positive	ON	OFF	OFF	ON	x	x	x	x
Negative	OFF	ON	ON	OFF	x	x	x	x

Remark x: Switch is normally OFF

Relationship of drive voltage (normally white)

Figure 5-24. TFT Drive Voltage Level

Table 5-14. γ-Curve Correction Circuit (γ-correction resistance)

Figure 5-25. γ-Curve Corrected Circuit (γ-corrected resistance value)

Figure 5-26. Internal Connection of V_{0} to V_{5}, VRH, VRL1, and VRL2

5.10 Partial Display Mode

The μ PD161622 is provided with a function that allows sections within the screen to be displayed separately (partial display mode). The start line of the area to be displayed in partial display mode is set using the partial display area start line register (R20, R21), the number of lines in the area to be displayed is set using the partial display area line count register (R22, R23), and the color of the area not to be displayed is set using the partial off area color register (R19). If "1" is set in the partial display area line count registers (R22, R23), the partial display areas each become 1 line. If " 0 " is set, there are no partial display areas but only normal display areas.
The non-display area indicated by R20 and R22 is called Partial 1, and the non-display area indicates by R21 and R23 is called Partial 2. The Partial 2 setting is enabled only when the Partial 1 setting has been performed (when R22 $\neq 0$). Therefore, to set only one area as a non-display area, perform only the setting for Partial 1.

Low power consumption cannot be achieved if only the partial mode is set. If low power consumption is required, the mode must be switched to the 8-clor mode.

Figure 5-26. Partial Display Mode

Cautions 1. The "scroll step count register (R17)" command is ignored in the partial display mode.
2. The specified partial areas must not directly overlap, and the Partial 1 area and Partial 2 area must be separated by at least one line. If the areas overlap, only the Partial 1 settings are valid, and partial display is not performed for the Partial 2 area.
3. When setting the partial display areas, be sure to observe the following relationship.
"00H" \leq R20 (R21)
R22 (R23) \leq "AFH"

The following sequence is recommended to avoid display malfunction when switching from normal display mode to partial display mode and vice versa.
(1) Recommended sequence for switching from normal display mode to partial display mode

DISP1 = 1 or DISP1 = 0, DISP0 = 1	R0	D7	<1> Display off
\downarrow			
PGDn setting	R19	Do	<2> Partial off area color register setting Note1
\downarrow			<3> Display data overwrite ${ }^{\text {Note1 }}$
Display data overwrite (for partial display)			
\downarrow			
P1SLn, P2SLn setting	$\begin{aligned} & \text { R20, } \\ & \text { R21 } \end{aligned}$	D_{0}	<4> Partial display area start line setting Note1
\downarrow			<5> Partial display area line count setting ${ }^{\text {Note1 }}$
P1AWn, P2AWn setting	$\begin{aligned} & \text { R22, } \\ & \text { R23 } \end{aligned}$	$\begin{gathered} \mathrm{D}_{7} \\ \vdots \\ \mathrm{D}_{0} \end{gathered}$	
\downarrow			<6> Partial display mode, 8-color mode ${ }^{\text {Note2 }}$
DTY = 1, COLOR = 1	R0	D4, D2	
\downarrow			
DISP1 = 0, DISP0 = 0	R0	D7	<7> Display on

Notes 1. <2> to <5> can be executed in any order.
2. <6> must be executed after <4> and <5> have been set.
(2) Recommended sequence for switching from partial display mode to normal display mode

DISP1 = 1 or DISP1 $=0$, DISP0 $=1$	Ro	D7	<1> Display off
\downarrow			
Display data overwrite (for normal display)			<2> Display data overwrite Note
\downarrow	R0	$\mathrm{D}_{4}, \mathrm{D}_{2}$	<3> Partial display mode, 65,000-color mode Note
DTY $=0, \mathrm{COLOR}=0$			
\downarrow			
DISP1 = 0, DISP0 = 0	R0	D7	<4> Display on

Note $<2>$ to $<3>$ can be executed in any order.
(3) Recommended sequence for switching from partial display mode to partial display mode (switching the partial display area)

DISP1 = 1 or DISP1 $=0$, DISP0 $=1$	R0	D7	<1> Display off	
\downarrow				
(display data overwrite)				<2> Display data overwrite Notes ${ }^{\text {Note1, } 2}$
\downarrow				
P1SLn, P2SLn setting		$\begin{aligned} & \text { R20, } \\ & \text { R21 } \end{aligned}$	$\begin{gathered} \mathrm{D}_{7} \\ \vdots \\ \vdots \\ \mathrm{D}_{0} \end{gathered}$	<3> Partial display area start line setting Note1
\downarrow	<4> Partial display area line count setting Note1			
P1AWn, P2AWn setting		$\begin{aligned} & \text { R22, } \\ & \text { R23 } \end{aligned}$	$\begin{gathered} D_{7} \\ \vdots \\ \vdots \\ D_{0} \end{gathered}$	
\downarrow	D4		<5> Partial display mode ${ }^{\text {Note3 }}$	
DTY = 1		R0		
\downarrow				
DISP1 $=0$, DISP0 $=0$	R0	D7	<6> Display on	

Notes 1. <2> to <4> can be executed in any order.
2. Execute <2> only when necessary.
3. $<5>$ must be executed after <3> and <4> have been set.

(4) Partial display setting examples

Setting A-1

Register	Setting Value	Details of Setting Value
Partial display area start line register (R20, R21)	00 H	Sets Y address 00 H
Partial display area line count register (R22, R23)	58 H	Sets an area of 88 lines

Setting A-2

Register	Setting Value	Details of Setting Value
Partial display area start line register (R20, R21)	58 H	Sets Y address 58H
Partial display area line count register (R22, R23)	58 H	Sets an area of 88 lines

Setting A-3

Register	Setting Value	Details of Setting Value
Partial display area start line register (R20, R21)	84 H	Sets Y address 84H
Partial display area line count register (R22, R23)	58 H	Sets an area of 88 lines

Setting A-4

Register	Setting Value	Details of Setting Value
Partial display area start line register (R20, R21)	2 CH	Sets Y address 2CH
Partial display area line count register (R22, R23)	58 H	Sets an area of 88 lines

Figure 5-28. Partial Display Setting Examples

5.11 Screen Scroll

The μ PD161622 has a screen scroll function. Any area of the screen can be scrolled by using the scroll area start line register (R15), scroll area line count register (R16), and scroll step count register (R17) to set the Y address of the top line of the area to be scrolled, the count of lines of the area to be scrolled, and the scroll step number, respectively.

Note that in partial mode, the screen scroll function is disabled.

Table 5-15. Scroll Area Start Line Register (R15)

SSL7	SSL6	SSL5	SSL4	SSL3	SSL2	SSL1	SSL0	Start Line Y Address
0	0	0	0	0	0	0	0	$00 H$
0	0	0	0	0	0	0	1	01 H
0	0	0	0	0	0	1	0	02 H
0	0	0	0	0	0	1	1	$03 H$
				\downarrow				\downarrow
1	0	1	0	1	1	0	1	ADH
1	0	1	0	1	1	1	0	AEH
1	0	1	0	1	1	1	1	AFH

Table 5-16. Scroll Area Line Count Register (R16)

SAW7	SAW6	SAW5	SAW4	SAW3	SAW2	SAW1	SAW0	Scroll Area Line Number
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	1	0	3
0	0	0	0	0	0	1	1	4
				\downarrow				\downarrow
1	0	1	0	1	1	0	1	174
1	0	1	0	1	1	1	0	175
1	0	1	0	1	1	1	1	176

Table 5-17. Scroll Step Count Register (R17)

SST7	SST6	SST5	SST4	SST3	SST2	SST1	SST0	Scroll Step Number
0	0	0	0	0	0	0	0	0 (no scroll)
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
0	0	0	0	0	0	1	1	3
				\downarrow				\downarrow
1	0	1	0	1	1	0	1	173
1	0	1	0	1	1	1	0	174
1	0	1	0	1	1	1	1	175

Scrolling must be set using the following sequence.
(1) Recommended scroll sequence

Notes 1. <1> to <2> can be executed in any order.
2. <3> must be executed after < $1>$ and <2> have been set.

Remark Set SSTn to 00 H to disable the scroll operation. No particular sequence is required for this.

Cautions 1. If the sum of the values of SSLn and SAWn is $\mathbf{1 7 6}$ (AFH) or over, it is invalid (no scroll operation).
2. Set the step number SSTn so that it does not exceed the line number SAWn. If a value exceeding SAWn is set, it will be invalid (no scroll operation).
(2) Scroll setting examples

Setting A-1

Register	Setting Value	Details of Setting Value
Scroll area start line register (R15)	00 H	Sets Y address 00 H
Scroll area line count register (R16)	AFH	Sets an area of 176 lines

Setting A-2

Register	Setting Value	Details of Setting Value
Scroll area start line register (R15)	00 H	Sets Y address 00H
Scroll area line count register (R16)	57 H	Sets an area of 88 lines

Setting A-3

Register	Setting Value	Details of Setting Value
Scroll area start line register (R15)	58 H	Sets Y address 58 H
Scroll area line count register (R16)	57 H	Sets an area of 88 lines

Setting A-4

Register	Setting Value	Details of Setting Value
Scroll area start line register (R15)	2 CH	Sets Y address 2CH
Scroll area line count register (R16)	57 H	Sets an area of 88 lines

Figure 5-29. Display Scroll Setting Examples

(3) Scroll setting flowchart example

\downarrow

\downarrow

D_{7} to D_{0} Scroll area start line register
RS

	MSB							
H	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Caution D_{7} to D_{0} are the data for Scroll area start line.
D_{5} to D_{0} Index register

D_{7} to D_{0} Scroll area line count register

Caution D_{7} to D_{0} are the data for Scroll area line count register.
D_{6} to D_{0} Index register

RS								MSB
L	X	0	0	1	0	0	0	1

D_{7} to D_{0} Scroll step count register

| RS | MSB | LSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H 0 0 0 0 0 0 | | |

D_{6} to D_{0} Index register

D 7 to D_{0} X address register
RS MSB

H	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Caution D_{7} to D_{0} depend on application condition.
D6 to Do Index register

D7 to $D_{0} Y$ address register

RS								
MSB	LSB							
H	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Caution D_{7} to D_{0} depend on application condition.

D7 to Do Display memory

Caution D_{7} to D_{0} are display memory data.
D7 to Do Display memory

RS	MSB	LSB						
H	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Caution D_{7} to D_{0} are display memory data.

R12 D_{7} to Do Display memory

| RS | MSB | LSB |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H D_{7} D_{6} D_{5} D_{4} D_{3} D_{2}
 D_{1} D_{0} | | |

Caution D_{7} to D_{1} are display memory data.
R $\quad D_{6}$ to Do Index register
RS MSB

L	X	0	0	1	0	0	0	1

R17 $\quad D_{7}$ to D_{0} Scroll step count register
RS

c	MSB							
H	0	0	0	0	0	0	1	0

D6 to Do Index register

RS	MSB	LSB						
L	X	0	0	0	0	1	1	0

D_{6} to $D_{0} X$ address register

RS												
MSB												LSB
H D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1}												

Caution D_{7} to D_{0} depend on application condition.
D6 to Do Index register
RS

MSB	LSB							
L	X	X	0	0	0	1	1	1

D7 to $D_{0} Y$ address register

Caution D_{7} to D_{1} depend on application condition.
D_{6} to D_{0} Index register

| RS | MSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L X 0 0 0 1 | |

R12 $\quad D_{7}$ to Do Display memory

RS	MSB			LSB							
H	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}			

Caution D_{7} to D_{0} are display memory data.
D7 to Do Display memory

| RS | MSB | LSB | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} | | | |

Caution D_{7} to D_{0} are display memory data.

R12 D_{7} to Do Display memory
RS

MSB								
H	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Caution D_{7} to D_{0} are display memory data.
(repeat)
Next transaction

Caution This sequence is shown only for the purpose of illustrating the command sequence, and is not meant for use in mass-production design.

(4) Scroll function example

Scroll area start line register (R15): 2CH
Scroll area line count register (R16): 58H
(a) Scroll step count register setting (R17): 00H

(b) Scroll step count register setting (R17): 01H

(c) Scroll step count register setting (R17): 02H

(d) Scroll step count register setting (R17): 57H

5.12 Stand-by

The μ PD161622 has a stand-by function. Input of a stand-by command is acknowledged when the STBY bit of the control register 1 (RO) is set to 1 .
When the stand-by command has been input, the μ PD161622 is forcibly placed in the Vss display status, and scans the frame being display to the end. When scanning is complete, all gate outputs are turned on, the charge of the pixel on the TFT panel is decreased to 0 , and the output stage amplifier and internal oscillator are stopped.
The stand-by function is valid for only the source driver IC; the gate IC (μ PD161640) and power IC (μ PD161660) connected to the μ PD161622 are not controlled by this function.
After executing the stand-by command, therefore, execute commands that turn off the regulator for the gate IC and power IC an turn off the DC/DC converter.
When the stand-by status is released, turn on the DC/DC converter and the regulator of the gate IC and power IC, and then issue an ordinary operation command (STBY $=0$), in the reverse order to which the stand-by command was input.

(1) Stand-by sequence

Ds to Do Index register

D_{7} to D_{0} Power supply control register 1								
RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \\ & \hline \end{aligned}$							$\begin{aligned} & D_{8} \\ & D_{0} \end{aligned}$
H								
	X	D6	D5	D4	D3	0	0	1

D_{6} to D_{3} are set in accordance with the usage conditions.
D_{2} : Gate driver regulator OFF
D1: Power supply IC regulator OFF
Do: DC/DC converter ON

Although a setting of 0 ns has no negative effect in terms of the device, be sure to finalize the timing after sufficient evaluation with the LCD module.

D_{7} to D_{0} Power supply control register 1

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \\ & \hline \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \\ & \hline \end{aligned}$	
H								
	X	D6	D5	D_{4}	D_{3}	0	0	0

D_{6} to D_{3} are set in accordance with the usage conditions.
D_{2} : Gate driver regulator OFF
D1: Power supply IC regulator OFF
Do: DC/DC converter OFF

Caution This sequence is shown only for the purpose of illustrating the command sequence, and is not meant for use in mass-production design.
(2) Stand-by release sequence

\downarrow

Control register 1 setting
<Power supply control sequence>

Power supply control register 1 assignment
\downarrow
Power supply control register 1 setting

\downarrow

Power supply control register 1 setting

D6 to Do Index register

RS	$D_{15}$$\mathrm{D}_{7}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \\ & \hline \end{aligned}$	
	X	X	X	X	X	X	X	X
L	X	0	0	0	0	0	0	0

D_{7} to D_{0} Control register 1

D7: All data "1" output (normally white: white output)
D6: Normal display
D4: Normal display mode (not partial display mode)
D_{3} : Normal mode (stand-by release)
D_{2} : 65,000-color display mode
D_{1} : Normal power mode
D_{5} is set in accordance with the usage conditions.

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \\ & \hline \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
L	X	X	X	X	X	X	X	X
L	X	0	0	1	1	0	0	1

D_{7} to D_{0} Power supply control register 1

D_{6} to D_{3} are set in accordance with the usage conditions.
D_{2} : Gate driver regulator OFF
D1: Power supply IC regulator OFF
Do: DC/DC converter ON
tDDRP is the output stable period of the DC/DC converter.
Although a setting of about 50 mS is the target, be sure to finalize the timing after sufficient evaluation with the LCD module.

D5 to Do Index register

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \\ & \hline \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
	X	X	X	X	X	X	X	X
L	X	0	0	1	1	0	0	1

D_{7} to D_{0} Power supply control register 1

D_{6} to D_{3} are set in accordance with the usage conditions.
D_{2} : Gate driver regulator OFF
D1: Power supply IC regulator ON
Do: DC/DC converter ON

\downarrow

IR

Control register 1 assignment
\downarrow

Control register 1 setting
\downarrow
trPRG is the output stable period of the DC/DC converter. Although a setting of about 20 mS is the target, be sure to finalize the timing after sufficient evaluation with the LCD module.
D_{5} to D_{0} Index register

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
	X	X	X	X	X	X	X	X
	X	0	0	1	1	0	0	1

D_{7} to D_{0} Power supply control register 1

D_{6} to D_{3} are set in accordance with the usage conditions.
D_{2} : Gate driver regulator ON
D1: Power supply IC regulator ON
Do: DC/DC converter ON
Note This setting can be deleted from the sequence when using an IC with no regulator circuit for the gate driver.

Input DISP ON command after all power supply is set up.
Although a setting of about 1 mS is the target in trPRg, be sure to finalize the timing after sufficient evaluation with the LCD module.

D6 to Do Index register

D_{7} to D_{0} Control register 1

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
H	X	X	X	X	X	X	X	X
H	0	0	D5	0	0	0	0	0

D_{7} : Normal display (all data "1" output \rightarrow display ON)
D6: Normal display
D4: Normal display mode (not partial display mode)
D_{3} : Normal mode (stand-by release)
D_{2} : 65,000-color display mode
D_{1} : Normal power mode
D_{5} is set in accordance with the usage conditions.

Caution This sequence is shown only for the purpose of illustrating the command sequence, and is not meant for use in mass-production design.

5.13 8-Color Dispaly Mode

The μ PD161622 contains an 8-color display function for low-power-consumption driving. The mode can be switched to 8 -color display mode by setting COLOR in control register 1 (R0) to 1 .
As shown in the figure below, in 8-color display mode, the μ PD161622 controls ON/OFF of each dot using the MSB of each dot data in the display RAM. It is therefore necessary to overwrite the display RAM data in accordance with the screen of each mode when changing from 65,000 -color display mode to 8 -color mode, and vice versa.
In 8-color display mode, each source output is connected by switching the top and bottom grayscale voltages to enable direct driving of the TFT panel, which results in low power consumption.

Figure 5-30.

D_{15}	D14	D_{13}	D_{12}	D_{11}	D10	D9	D8	D_{7}	D6	D5	D4	D 3	D_{2}	D1	Do
Valid	Invalid	Invalid	Invalid	Invalid	Valid	Invalid	Invalid	Invalid	Invalid	Invalid	Valid	Invalid	Invalid	Invalid	Invalid
Dot 1					Dot 2						Dot 3				
1 pixel (= $1 \times$ address)															

(1) 8-color display mode setting sequence example

<Data overwrite sequence>

IR
<Data overwrite sequence>
D_{6} to D_{0} Index register

D_{7} to D_{0} Control register 1

D7: Normal display
D6: All data "0" output (normally white: black output)
D4: Normal display mode (not partial display mode)
D3: Stand-by OFF
D_{2} : 65,000-color display mode
D1: Normal power mode
D_{5} is set in accordance with the usage conditions.
In 8-color display mode, the value of the MSB of each dot data in the internal display RAM is used as the color data, making it necessary to overwrite the display RAM data when changing from 65,000-color display mode to 8-color display mode.
D_{6} to D_{0} Index register

								D_{15}
RS			D_{8}					
D_{7}	X							
L	X	X	X	X	X	X	X	X
	X	0	0	0	0	1	1	0

D_{7} to $\mathrm{D}_{0} \mathrm{X}$ address register

X address: 00H

D6 to Do Index register

D7 to $\mathrm{D}_{0} \mathrm{Y}$ address register
RS
H D_{15} D_{7} X

Y address: 00 H

IR

R12

RS	D_{7}						Do	
H	D_{15}	X	X	X	X	D_{10}	X	X
	X	X	X	D_{4}	X	X	X	X

Caution D_{15}, D_{10}, and D_{4} are display memory data.
When in 8 -color mode, only $\mathrm{D}_{15}, \mathrm{D}_{10}$, and D_{4} data are valid. 0 : OFF, 1: ON, (normally white)

R12 D15 to Do Display memory register

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \\ & \hline \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
H	D_{15}	X	X	X	X	D_{10}	X	X
H	X	X	X	D4	X	X	X	X

Caution $D_{15} D_{10}$, and D_{4} are display memory data.
When in 8 -color mode, only D_{15}, D_{10}, and D_{4} data are valid.
0 : OFF, 1: ON, (normally white)

\downarrow
R12

IR

R0

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \\ & \hline \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
H	X	X	X	X	X	X	X	X
H	0	0	D5	0	0	1	D1	0

D7: Normal display
D6: Normal display (display ON [All data "0" display \rightarrow normal mode])
D4: Normal display mode (not partial display mode)
D3: Stand-by OFF
D2: 8-color display mode
D_{1} : Power mode is set in accordance with the usage conditions. D_{5} is set in accordance with the usage conditions.

Caution This sequence is shown only for the purpose of illustrating the command sequence, and is not meant for use in mass-production design.
(2) Returning to 65,000-color display mode sequence

\downarrow

\downarrow
IR

R0

R7
IR

R6

D_{7} to D_{0} Control register 1

D7: Normal display
D6: All data "0" output (normally white: black output)
D4: Normal display mode (not partial display mode)
D3: Stand-by OFF
D2: 8-color display mode
D_{1} : Normal power mode
D_{5} is set in accordance with the usage conditions.
In 8-color display mode, the value of the MSB of each dot date in the internal display RAM is used as the color data, making it necessary to overwrite the display RAM data when returning to 65,000-color display mode from 8-color display mode.

D6 to D_{0} Index register

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
L	X	X	X	X	X	X	X	X
L	X	0	0	0	0	1	1	0

X address: 00 H
D_{6} to D_{0} Index register

RS	$\begin{aligned} & D_{15} \\ & D_{7} \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
L	X	X	X	X	X	X	X	X
L	X	0	0	0	0	1	1	1

D7 to $\mathrm{D}_{0} \mathrm{Y}$ address register

Y address: 00 H

\downarrow

\downarrow

\downarrow

R12

D_{15} to Do Display memory register								
RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \\ & \hline \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
H	D_{15}	D14	D13	D12	D11	D_{10}	D9	D8
	D_{7}	D_{6}	D5	D_{4}	D_{3}	D_{2}	D1	Do

Caution D_{15} to D_{0} are display memory data.
R12 D_{15} to Do Display memory register

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
H	D15	D14	D13	D12	D11	D10	D9	D8
	D7	D6	D5	D_{4}	D_{3}	D_{2}	D1	D0

Caution D_{15} to D_{0} are display memory data.

R12 D 15 to Do Display memory register

Caution D_{15} to D_{0} are display memory data.
D_{6} to D_{0} Index register

D_{7} to D_{0} Control register 1

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \\ & \hline \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
H	X	X	X	X	X	X	X	X
	0	0	D5	0	0	0	0	0

D7: Normal display
D6: Normal display (display ON [All data "0" display \rightarrow normal mode])
D4: Normal display mode (not partial display mode)
D3: Stand-by OFF
D2: 65,000-color display mode
D_{1} : Normal power mode
D_{5} is set in accordance with the usage conditions.

Caution This sequence is shown only for the purpose of illustrating the command sequence, and is not meant for use in mass-production design.

5.14 Power ON/OFF

An example of the standard power ON/OFF sequence in a chipset for driving a TFT-LCD panel that uses μ PD61622 is shown below. Note that this sequence diffes depending on the chipset configuration and TFT-LCD panel used.

(1) Power ON sequence

Reset register setting
\downarrow
<Initial status setting sequence>

<initial status setting sequence>
Power supply control register 1 assignment
\downarrow

\downarrow

Power supply control register 1 setting
\downarrow

Power supply control register 2 assignment
\downarrow
Power supply control register 2 setting
\downarrow

IR

R3

IR
D5 to Do Index register

R25
D_{7} to D_{0} Power supply control register 1

D_{6} to D_{3} are set in accordance with the usage conditions.
D_{2} : Gate driver regulator OFF
D1: Power supply IC regulator OFF
Do: DC/DC converter OFF

D6 to Do Index register

R26 $\quad D_{7}$ to D_{0} Power supply control register 2

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
H								
	X	X	X	X	X	X	D1	Do

D_{1} and D_{0} are set in accordance with the usage conditions.

IR
D_{6} to D_{0} Index register

D_{7} to D_{0} Power supply control register 1

D_{6} to D_{3} are set in accordance with the usage conditions.
D_{2} : Gate driver regulator ON
D1: Power supply IC regulator ON
Do: DC/DC converter ON
D_{6} to D_{0} Index register

D_{7} to D_{0} Power supply control register 1

D_{7} to D_{3} are set in accordance with the usage conditions. This register setting is not required when VCOMC $\left(\mathrm{D}_{3}\right)$ of the output stage capacity setting register (R30) is 0 .

D6 to Do Index register

D_{7} to D_{0} Power supply control register 1

								D_{15}
RS			D_{8}					
D_{7}								
H	X	X	X	X	X	X	X	X
	O	D_{6}	D_{5}	D_{4}	0	D_{2}	D_{1}	D_{0}

D7: g-correction circuit reference voltage generation amplifier drive/normal
D3: VCOM amplifier operation (when in used)
D6 to D4 are set in accordance with the usage conditions
(capacity setting for COMMON center value setting amplifier (VCOM)).
D2 to Do are set in accordance with the usage conditions (source output capacity setting).

Control register 1 setting

Control register 2 assignment
ontrol register 2 setting
\downarrow

\downarrow
\downarrow
D6 to Do Index register

D_{7} to D_{0} Control register 1

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \\ & \hline \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
	X	X	X	X	X	X	X	X
H	1	0	D5	0	0	0	0	0

D7: All data "1" output (normally white: white output)
D6: Normal display
D4: Normal display mode (not partial display mode)
D: Stand-by OFF
D2: 65,000-color display mode
D_{1} : Normal power mode
D_{5} is set in accordance with the usage conditions.
IR

IR
D6 to Do Index register

D_{7} to D_{0} Calibration register

Calibration wait time (tcal)
$t_{\text {cal }}=1 \div($ frame frequency $\times 177)$
D6 to Do Index register

<Data write sequence> X address register assignment \downarrow X address register setting \downarrow

IR

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \\ & \hline \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
H	X	X	X	X	X	X	X	X
H	0	0	0	0	0	0	0	0

X address: 00 H
D6 D_{0}

Y address register setting

\downarrow

Display data write 2

Display data write n (end)
\downarrow

\downarrow

D6 to Do Index register

R12
D15 to Do Display memory register

Caution D_{15} to D_{0} are display memory data.
D15 to Do Display memory register

Caution D_{15} to D_{0} are display memory data.

D15 to Do Display memory register

Caution D_{15} to D_{0} are display memory data.
D6 to Do Index register

D_{7} to D_{0} Control register 1

D7: Normal display(display ON [All data "0" display \rightarrow normal mode])
D6: Normal display
D4: Normal display mode (not partial display mode)
D3: Stand-by OFF
D2: 65,000-color display mode
D1: Normal power mode
D_{5} is set in accordance with the usage conditions.
Next transaction

Caution This sequence is shown only for the purpose of illustrating the sequence from power application to display ON, and is not meant for use in mass production design. Note also that this sequence differs depending on the configuration of the chipset and TFT-LCD module

(2) Power OFF sequence

Wait time 2 (trgRP)
\downarrow

Operating status (normal display)
\downarrow
Control register 1 assignment
\downarrow
Control register 1 setting

\downarrow

IR

Power supply control register 1 assignment
\downarrow

\downarrow

D_{6} to D_{0} Index register								
RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \\ & \hline \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \\ & \hline \end{aligned}$	
L	X	X	X	X	X	X	X	X
L	X	0	0	0	0	0	0	0

D_{7} to D_{0} Control register 1

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
	X	X	X	X	X	X	X	X
H	X	X	D_{5}	0	1	0	0	0

D7: Don't care
D6: Don't care
D4: Normal display mode (not partial display mode)
D3: Stand-by ON
D2: 65,000-color display mode
D_{1} : Normal power mode
D_{5} is set in accordance with the usage conditions.
The source output is automatically fixed to the Vss level by standby, so D_{7} and D_{6} can be set to any value.

At least one frame period
D_{5} to D_{0} Index register

D_{7} to D_{0} Power supply control register 1

D_{6} to D_{3} are set in accordance with the usage conditions.
D_{2} : Gate driver regulator OFF
D1: Power supply IC regulator ON
Do: DC/DC converter ON
Note This setting can be deleted from the sequence when using an IC with no regulator circuit for the gate driver.

Although a setting of 0 ns has no negative effect in terms of the device, be sure to finalize the timing after sufficient evaluation with the LCD module.

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
L	X	X	X	X	X	X	X	X
L	X	0	0	1	1	0	0	1

D_{7} to D_{0} Power supply control register 1

D_{6} to D_{3} are set in accordance with the usage conditions.
D_{2} : Gate driver regulator OFF
D1: Power supply IC regulator OFF
Do: DC/DC converter ON

Although a setting of 0 ns has no negative effect in terms of the device, be sure to finalize the timing after sufficient evaluation with the LCD module.

D_{7} to D_{0} Power supply control register 1

RS	$\begin{aligned} & \mathrm{D}_{15} \\ & \mathrm{D}_{7} \\ & \hline \end{aligned}$						$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	
H								
	X	D6	D5	D4	D3	0	0	0

D_{6} to D_{3} are set in accordance with the usage conditions.
D_{2} : Gate driver regulator OFF
D1: Power supply IC regulator OFF
Do: DC/DC converter OFF

Do not need to input RESET in source driver, however, when power off, system reset is set up to /RESET = L by timing DCON (R25: Do).

Caution This sequence is shown only for the purpose of illustrating the sequence up to when the power is turned off, and is not meant for use in mass-prodution design. Note also that this sequence differs depending on the configuration of the chipset and TFT-LCD module.

6. RESET

If the /RESET input becomes L or the reset command is input, the internal timing generator is initialized. The reset command will also initialize each register to its default value. These default values are listed in the table below.

Register	Rn	/RESET Pin ${ }^{\text {Note }} 1$	Reset Command	Default Value
Index register	IR	X	0	00H
Control register 1	R0	X	0	00H
Control register 2	R1	X	0	00H
Data access control register	R5	X	0	OOH
X address register	R6	X	0	00H
Y address register	R7	X	0	00H
MIN. $\cdot \mathrm{X}$ address register	R8	X	0	OOH
MAX. $\cdot \mathrm{X}$ address register	R9	X	0	OOH
MIN. . Y address register	R10	X	0	OOH
MIN. . Y address register	R11	X	0	OOH
Display memory register ${ }^{\text {Note2 }}$	R12	X	X	-
Scroll area start line register	R15	X	0	00H
Scroll area line count register	R16	X	0	OOH
Scroll step count register	R17	X	0	00H
Partial off area color register	R19	X	0	00H
Partial 1 display area start line register	R20	X	0	OOH
Partial 2 display area start line register	R21	X	0	00H
Partial 1 display area line count register	R22	X	0	00H
Partial 2 display area line count register	R23	X	0	OOH
Power supply control register 1	R25	X	0	OOH
Power supply control register 2	R26	X	0	OOH
VCOM output center value setting register	R29	X	0	00H
Output stage capacity setting register	R30	X	0	OOH
γ reference-voltage generator capacity setting register	R31	X	0	00H
γ contrast value setting register 1	R36	X	0	00H
γ contrast value setting register 2	R37	X	0	00H
γ contrast value setting register 3	R38	X	0	00H
γ contrast value setting register 4	R39	X	0	00H
Pre-charge direction setting data register	R40	X	0	00H
γ-correction input disconnect register	R42	X	0	00H
Calibration register ${ }^{\text {Note }} 3$	R45	X	0	OOH
Pre-charge period supplement pulse setting register	R46	X	0	06H
Output port register	R49	X	0	00H
Input port register	R50	X	0	OOH
Interface operating voltage setting register	R114	X	0	00H
Internal logic operating voltage setting register	R115	X	0	OOH
Test mode		X	0	OOH

Remark O: Default value set, X: Default value not set

Notes 1. The internal counters are initialized only by a reset from the /RESET pin. Be sure to perform reset via the /RESET pin at power application.
2. The contents of RAM are saved in the case of both reset by /RESET pin and reset by reset command. Note that the RAM contents are undifined. immediately after the power is turned on.
3. The following value is set as the calibration setting time, tcal, in a reset by reset command. tcal $=1 /$ fosc $\times 37$

7. COMMAND

The μ PD161622 identifies data bus signals by a combination of the RS, /RD (E), and $/ W R(R, / W)$ signals. It interprets and executes commands only in accordance with the internal timing, without being dependent upon the external clock. Therefore, the processing speed is extremely high and, usually, no busy check is necessary.
An i80 system CPU interface inputs a low pulse to the /RD pin when it reads data to issue a command. It inputs a low pulse to the /WR pin when it writes data.
Data can be read from an M68 system CPU interface if a high-pulse signal is input to the R,/W pin, and written if a low-pulse signal is input to the $R, / W$ pin. A command is executed if a high-pulse signal is input to the E pin in this status. Therefore, in the explanation of the commands and display commands after 7.2 Control Register 1 (R0) and the sections that follow, the M68 system CPU interface uses H , instead of /RD (E), when reading status or display data. This is how it differs from the i80 system CPU interface.
The commands of the μ PD161622 are explained below, taking an i80 system CPU interface as an example. When the serial interface is used, sequentially input data to the $\mu \mathrm{PD} 161622$, starting from D_{7}.

The data bus length to input commands is as follows:

- Commands other than those that manipulate the display memory register (R12) are input in one byte unit, regardless of the value of BMD (control register 2 (R1), bus length setting).
- The commands that manipulate the display memory register (R12) are input in 1-byte units when BMD $=1$, or in 2-byte units when $\mathrm{BMD}=0$.

(1) Commands other than those that manipulate display memory register (R12)

BMD $=1$ (8-bit data bus)

Pin	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
DATA	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

BMD $=0$ (16-bit data bus)

Pin	D_{15}	D_{14}	D_{13}	D_{12}	D_{11}	D_{10}	D_{9}	D_{8}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
DATA	Note	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}							

Note 0 or 1

(2) Display Memory Register (R12)

BMD = 1 (8-bit data bus)

Pin	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
DATA	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

BMD $=0$ (16-bit data bus)

Pin	D_{15}	D_{14}	D_{13}	D_{12}	D_{11}	D_{10}	D_{9}	D_{8}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
DATA	D_{15}	D_{14}	D_{13}	D_{12}	D_{11}	D_{10}	D_{9}	D_{8}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

7.1 Command List

CS	RS	Index Register							$R \mathrm{n}$	Register Name	R/W	Data Bits							
		6	5	4	3	2	1	0				7	6	5	4	3	2	1	0
1																			
0	0								IR	Index register	W	IR7	IR6	IR5	IR4	IR3	IR2	IR1	IR0
0	1	0	0	0	0	0	0	0	R0	Control register 1	R/W	DISP1	DISP0	ADC	DTY	STBY	COLOR	LPM	GSM
0	1	0	0	0	0	0	0	1	R1	Control register 2	R/W			VSEL	GSEL			LTS	INV
0	1	0	0	0	0	0	1	0	R2										
0	1	0	0	0	0	0	1	1	R3	Reset register	W								CRES
0	1	0	0	0	0	1	0	0	R4										
0	1	0	0	0	0	1	0	1	R5	Data access control register	R/W	BMD	BSTR		WAS		INC	XDIR	YDIR
0	1	0	0	0	0	1	1	0	R6	X address register	R/W	XA7	XA6	XA5	XA4	XA3	XA2	XA1	XA0
0	1	0	0	0	0	1	1	1	R7	Y address register	R/W	YA7	YA6	YA5	YA4	YA3	YA2	YA1	YA0
0	1	0	0	0	1	0	0	0	R8	MIN. • X address register	R/W	XMIN7	XMIN6	XMIN5	XMIN4	XMIN3	XMIN2	XMIN1	XMINO
0	1	0	0	0	1	0	0	1	R9	MAX. $\cdot X$ address register	R/W	xMAX7	XMAX6	XMAX5	XMAX4	XMAX3	XMAX2	XMAX1	XmAX0
0	1	0	0	0	1	0	1	0	R10	MIN. $\cdot \mathrm{Y}$ address register	R/W	YMIN7	YMIN6	YMIN5	YMIN4	YMIN3	YMIN2	YMIN1	YMINO
0	1	0	0	0	1	0	1	1	R11	MAX. Y address register	R/W	YMAX7	YMAX6	YMAX5	YMAX4	YMAX3	YMAX2	YMAX1	YMAXO
0	1	0	0	0	1	1	0	0	R12	Display memory register	W	D7	D6	D5	D4	D3	D2	D_{1}	D0
0	1	0	0	0	1	1	0	1	R13										
0	1	0	0	0	1	1	1	0	R14										
0	1	0	0	0	1	1	1	1	R15	Scroll area start line register	R/W	SSL7	SSL6	SSL5	SSL4	SSL3	SSL2	SSL1	SSLO
0	1	0	0	1	0	0	0	0	R16	Scroll area line count register	R/W	SAW7	SAW6	SAW5	SAW4	SAW3	SAW2	SAW1	SAW0
0	1	0	0	1	0	0	0	1	R17	Scroll step count register	R/W	SST7	SST6	SST5	SST4	SST3	SST2	SST1	SSTO
0	1	0	0	1	0	0	1	0	R18										
0	1	0	0	1	0	0	1	1	R19	Partial off area color register	R/W						PGR	PGG	PGB
0	1	0	0	1	0	1	0	0	R20	Partial 1 display area start line register	R/W	P1SL7	P1SL6	P1SL5	P1SL4	P1SL3	P1SL2	P1SL1	P1SL0
0	1	0	0	1	0	1	0	1	R21	Partial 2 display area start line register	R/W	P2SL7	P2SL6	P2SL5	P2SL4	P2SL3	P2SL2	P2SL1	P2SL0
0	1	0	0	1	0	1	1	0	R22	Partial 1 display area line count register	R/W	P1AW7	P1AW6	P1AW5	P1AW4	P1AW3	P1AW2	P1AW1	P1AW0
0	1	0	0	1	0	1	1	1	R23	Partial 2 display area line count register	R/W	P2AW7	P2AW6	P2AW5	P2AW4	P2AW3	P2AW2	P2AW1	P2AW0
0	1	0	0	1	1	0	0	0	R24										
0	1	0	0	1	1	0	0	1	R25	Power supply control register 1	R/W		BGRS	VCE	VCD2	PVCOM	RGONG	RGONP	DCON
0	1	0	0	1	1	0	1	0	R26	Power supply control register 2	R/W							VCD12	VCD11
0	1	0	0	1	1	0	1	1	R27										
0	1	0	0	1	1	1	0	0	R28										
0	1	0	0	1	1	1	0	1	R29	VCOM output center value setting register	R/W	EV7	EV6	EV5	EV4	EV3	EV2	EV1	EV0
0	1	0	0	1	1	1	1	0	R30	Output stage capacity setting register	R/W	BPL	Cl 2	Cl1	CIO	vcomc	SF2	SF1	SFO
0	1	0	0	1	1	1	1	1	R31	γ-reference-voltage generator setting register	R/W	WHP	WI2	WI1	WIO	BHP	B12	B11	BIO
0	1	0	1	0	0	0	0	0	R32										
0	1	0	1	0	0	0	0	1	R33										
0	1	0	1	0	0	0	1	0	R34										
0	1	0	1	0	0	0	1	1	R35										
0	1	0	1	0	0	1	0	0	R36	γ-contrast value setting register 1	R/W	GPH7	GPH6	GPH5	GPH4	GPH3	GPH2	GPH1	GPH0
0	1	0	1	0	0	1	0	1	R37	γ-contrast value setting register 2	R/W	GNH7	GNH6	GNH5	GNH4	GNH3	GNH2	GNH1	GNH0
0	1	0	1	0	0	1	1	0	R38	γ-contrast value setting register 3	R/W	GPL7	GPL6	GPL5	GPL4	GPL3	GPL2	GPL1	GPLO
0	1	0	1	0	0	1	1	1	R39	γ-contrast value setting register 4	R/W	GNL7	GNL6	GNL5	GNL4	GNL3	GNL2	GNL1	GNLO
0	1	0	1	0	1	0	0	0	R40	Pre-charge direction setting data register	R/W	RDTP3	RDTP2	RDTP1	RDTP0	RDTN3	RDTN2	RDTN1	RDTNO
0	1	0	1	0	1	0	0	1	R41										
0	1	0	1	0	1	0	1	0	R42	γ-correction input disconnect register	R/W								GHSW
0	1	0	1	0	1	0	1	1	R43										
0	1	0	1	0	1	1	0	0	R44										
0	1	0	1	0	1	1	0	1	R45	Calibration register	R/W								OC
0	1	0	1	0	1	1	1	0	R46	Pre-charge period supplement pulse setting register	R/W		PLIM6	PLIM5	PLIM4	PLIM3	PLIM2	PLIM1	PLIM0
0	1	0	1	0	1	1	1	1	R47										
0	1	0	1	1	0	0	0	0	R48										
0	1	0	1	1	0	0	0	1	R49	Output port register	R/W	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OPO
0	1	0	1	1	0	0	1	0	R50	Input port register	R					IP3	IP2	IP1	IP0
0	1	0	1	1	0	0	1	1	R51										
0	1	0	1	1	0	1	0	0	R52										
0	1	0	1	1	0	1	0	1	R53										
0	1	0	1	1	0	1	1	0	R54										
0	1	0	1	1	0	1	1	1	R55										
0	1	0	1	1	1	0	0	0	R56										
0	1	0	1	1	1	0	0	1	R57										
0	1	0	1	1	1	0	1	0	R58										
0	1	0	1	1	1	0	1	1	R59										
0	1	0	1	1	1	1	0	0	R60										
0	1	0	1	1	1	1	0	1	R61										
0	1	0	1	1	1	1	1	0	R62										
0	1	0	1	1	1	1	1	1	R63										
0	1	0	1	0	1	1	0	1	R114	Interface operating voltage setting register	R/W							RTSC1	RTSC0
0	1	0	1	0	1	1	1	0	R115	Internal logic operating voltage setting register	R/W							RTSL1	RTSLO

Remark

```
\square: These registers cannot be used.
```

Cautions 1. If a write-only register is read, invalid data will be output.
2. A low level is output when an unused register is read.

7.2 Command Explanation

Resistor	Bit	Symbol	Function
R0	D_{7}	DISP1	This command performs the same output as when all data is 1 , independently of the internal RAM data (white display in the case of normally white). This command is executed, after it has been transferred, when the next line is output. 0 : Normal operation 1: Ignores data of RAM and outputs all data as 1. DISP1 takes precedence over DISP0. When DISP1 $=\mathrm{H}, \mathrm{DISP} 0=\mathrm{H}$ is ignored.
	D6	DISP0	This command performs the same output as when all data is 0 , independently of the internal RAM data (black display in the case of normally white). This command is executed, after it has been transferred, when the next line is output. 0 : Normal operation 1: Ignores data of RAM and outputs all data as 0 .
	D5	ADC	Column address direction This command can be used to select the direction of source driver output. For more detail, refer to 5.2.3 Column address circuit
	D4	DTY	This pin selects the partial function. When partial display mode is selected, partial off area color is displayed by setting partial off area color register (R19). The power consumption cannot be reduced with the partial function. To reduce the power consumption, select the 8-color mode. This command is executed following transfer from the time the next line data is output. 0: Normal display mode 1: Partial display mode
	D_{3}	STBY	This bit selects the stand-by function. When the stand-by function is selected, a display OFF operation is executed and the amplifiers at each output stage and the operation of internal oscillation circuit are stopped. However, stand-by control cannot be performed for the gate IC (μ PD161640) connected to μ PD161622 and the power-supply IC (μ PD161660). Therefore, after executing the stand-by function using this bit, set both the regulator for the gate IC and power-supply IC to off and set the DC/DC converter to OFF. For the sequence, refer to the preliminary product information machine of the μ PD161660. Note that when releasing stand-by, perform the opposite operation, i.e., after setting the DC/DC converter to ON and setting the regulators of the gate IC and power-supply IC to ON, execute the normal operation command. 0: Normal operation 1: Stand-by function (display read off from RAM, stop both OSC and VCOM, display OFF = entire data is output as 1)
	D_{2}	COLOR	This pin switches the 65,000 -color mode and the 8 -color mode. When the 8 -color mode is selected, low power supply can be selected in order to stop the amplifier at each output stage. In the 8-color mode, the value of the MSB of the internal RAM data is used as the color data. This command is executed following transfer from the time the next line data is output. 0 : 65,000-color mode (16 bits/pixels) 1: 8-color mode (3 bits/pixels)

Resistor	Bit	Symbol	Function
R0	D1	LPM	This bit is used when setting the gate IC (μ PD161640) and power-supply IC (μ PD161660) to the low-power mode. When the low-power mode is selected, the LPMG pin and the LPMP pin signals change from low to high (output changes immediately following command execution.). The LPMG pin must be connected to the LPM pin of the gate IC, and the LPMP pin must be connected to the LPM pin of the power-supply IC. 0: Normal 1: Low power mode
	Do	GSM	Sets output of the gate scanning signal during partial display. When 1 is selected, gate scanning of the line set in the partial non-display area is stopped. 0 : Normal mode 1: Stops gate scanning in partial non-display area
R1	D5	VSEL	Sets the potential of the pre-charge output of the LCD driver. The maximum/minimum output potential of the pre-charge output is: 0 : Power supply voltage (outputs V s and V ss) 1: Maximum output level of internal γ-output adjustment circuit (uses VPH, VNH, VPL, VNL) IF VSEL $=0$, V_{s} or V_{ss} is automatically output as the pre-charge output.
	D4	GSEL	Sets the maximum/minimum output voltage of the γ-correction resistor. If the internal γ-output adjustment circuit is selected, the maximum/minimum output potential of the γ-correction resistor is: 0 : Supply voltage (outputs V_{s} and V ss). 1: Voltage of internal γ-output adjustment circuit (uses VPH, VNH, VPL, VNL) 8-color mode (3 bits/pixels)
	D1	LTS	Selects set time of calibration. The calibration function adjusts the frame frequency by setting time of one line. This command can select the set time of a line from the following: $0: 1$ line time $=\mathrm{tcal}$ 1: 1 line time $=\mathrm{t}_{\text {cal }} \times 2$ (tcal: Calibration set time $1=1 \div$ Frame frequency \div Number of displayed lines)
	Do	INV	This bit selects between the line inversion function and the frame inversion function. The mode selected by this command is executed from the start of the next scan after the gate scan in progress when this command was executed has completed 176 lines. When the reset command is input, the INV register is initialized. 0 : Line inversion with same line. 0 : Line inversion 1: Frame inversion
R3	Do	CRES	Command reset function. Be sure to execute this bit after power ON. Command reset automatically clears this bit following execution (CRES $=01 \mathrm{H}$). Therefore, it is not necessary to set 0 (select normal operation) again by software. Moreover, since the time required for the value of this bit to change $(1 \rightarrow 0)$ following command reset execution is extremely short, it is not necessary to secure time until the next command is set following command reset setting. 0: Normal operation 1: Command reset

Resistor	Bit	Symbol	Function
R5	D_{7}	BMD	Sets the bus width when the parallel interface is used. 0: 16-bit data bus 1: 8 -bit data bus This command is invalid when the serial interface is used.
	D6	BSTR	Sets the write mode for writing data to the display RAM. If the high-speed RAM write mode is selected, data is written to the display RAM in 64-bit units inside the μ PD161622. When selecting the high-speed RAM write mode, be sure to write data to the display RAM in 64-bit units. 0 : Normal write mode (16-bit access) 1: High-speed RAM write mode (64-bit access)
	D4	WAS	Window access mode setting When the window access mode is set, the address is incremented/decremented only in the range set by the MIN. •X address setting register (R8), MAX. $\cdot X$ address setting register (R9), MIN. $\cdot \mathrm{Y}$ address setting register (R10), and MAX. $\cdot \mathrm{Y}$ address setting register (R11). 0 : Normal operation 1: Window access mode
	D2	INC	Selects the direction in which the display RAM address is to be incremented/decremented. Whether the X address and Y address are incremented or decremented is specified by XDIR (R5: D_{1}) and YDIR (R5: D_{0}), respectively. 0 : Access in X address direction 1: Access in Y address direction
	D1	XDIR	Specifies whether the display RAM address is incremented or decremented in the X address direction. 0 : Increments X address 1: Decrements X address
	Do	YDIR	Specifies whether the display RAM address is incremented or decremented in the Y address direction. 0 : X address increment 1: X address decrement
R6	D_{7} to D_{0}	XAn	This register sets the X address of the display RAM. Set a value between 00 H and 83 H .
R7	D_{7} to D_{0}	YAn	This register sets the Y address of the display RAM. Set a value between 00H and AFH.
R8	D_{7} to D_{0}	XMINn	Sets the minimum value of the X address in the window access mode. The X address is incremented up to the maximum value set by the MAX. $\cdot X$ address register (R9), and then initialized to the address value set by this command. (R 5 : $\mathrm{XDIR}=0$) Set a value between 00 H to 82 H .
R9	D_{7} to D_{0}	XMAXn	Sets the maximum value of the X address in the window access mode. The X address is incremented up to the maximum value set by the MIN. •X address register (R8), and then initialized to the address value set by this command. (R5: XDIR = 0) Set a value between 01 H to 83 H .
R10	D_{7} to D_{0}	YMINn	Sets the minimum value of the T address in the window access mode. The Y address is incremented up to the maximum value set by the MAX. $\cdot \mathrm{Y}$ address register (R11), and then initialized to the address value set by this command. (R5: YDIR = 0) Set a value between 00 H to AEH.

Resistor	Bit	Symbol	Function
R11	D_{7} to D_{0}	YMAXn	Sets the maximum value of the Y address in the window access mode. The Y address is incremented up to the address value set by this command, and then initialized to the minimum address value set by the MIN. Y address register (R10) (R5: YDIR = 0) Set a value between 01H to AFH.
R12	D_{7} to D_{0}	D_{n}	These bits are used for reading/writing data from/to display memory (internal RAM).
R15	D_{7} to D_{0}	SSLn	Scroll area start line register (00 H to AFH) When the screen is scrolled, the screen of the number of lines set by the scroll area line count register (R16) is scrolled up by the number of steps set by the scroll step count register (R17), starting from the line set by this command.
R16	D_{7} to D_{0}	SAWn	Scroll area line count register (00 H to AFH) When the screen is scrolled, the screen of the number of lines set by this command is scrolled up by the number of steps set by the scroll step count register (R17), starting from the line set by the scroll area start line register (R15)
R17	D_{7} to D_{0}	SSTn	Scroll step count register (00 H to AFH) When the screen is scrolled, the screen of the number of lines set by the scroll area line count register (R16) and the scroll step count register (R17) is scrolled up by the number of steps set by this command. Note that because this command is invalid in the partial display mode, the scroll function cannot be used.
R19	D2	PGR	Partial off area color register Sets the color of the screen other than the partial display area during partial display (R0: DTY $=1$). One of eight colors can be selected (RGB: 1 bit each) as the off color. The relationship between each color data and the bits of this register is as follows. This relationship is not dependent upon the value of ADC. $\begin{aligned} & \text { PGR: } \mathrm{R} \text { OFF }=0, O N=1 \\ & \text { PGG: } \mathrm{G} \text { OFF }=0, O N=1 \\ & \text { PGB: } \mathrm{B} \text { OFF=0, } \mathrm{ON}=1 \end{aligned}$
	D1	PGG	
	Do	PGB	
R20	D_{7} to D_{0}	P1SLn	Partial 1 display area start line register (00 H to AFH) During partial display (RO: DTY = 1), the area starting from the line set by this command and ending as set by the partial 1 display area line count register (R22) is the partial 1 display area.
R21	D_{7} to D_{0}	P2SLn	Partial 2 display area start line register (00 H to AFH) During partial display (RO : DTY $=1$), the area starting from the line set by this command and ending as set by the partial 2 display area line count register (R23) is the partial 2 display area.
R22	D_{7} to D_{0}	P1AWn	Partial 1 display area line count register (00 H to AFH) An area starting from the line set by the partial 1 display area start register (R20) and ending as set by this command is the partial 1 display area. If this register is 0 , the values of the partial 2 display area start line register (R29) and the partial 2 display area line count register (R31) are not valid.
R23	D_{7} to D_{0}	P2AWn	Partial 2 display area line count register (00 H to AFH) An area starting from the line set by the partial 2 display area start register (R21) and ending as set by this command is the partial 2 display area. If the partial 1 display area line count register is 0 , the values of the partial 2 display area start line register (R21) and partial 2 display area line count register (R23) are not valid.

Resistor	Bit	Symbol	Function
R25	D6	BGRS	This pin selects whether to use the internal power supply or an external power supply (input from the BRGIN pin) for generation the common center voltage output from the VCOM pin. 0 : The internal power-supply is selected as the VCOM power supply 1: Input from the external power-supply BGRIN is selected as the VCOM power supply
	D5	VCE	Selects the Vo output level of the power-supply IC (μ PD161660). The Vce pin of the μ PD161622 and the VCE pin of the power-supply IC must be connected. 0 : The Vo high-level booster voltage level is VDD1 minus 1 level 1: The Vo high-level booster voltage level is the same level as $V_{D D 1}$
	D4	VCD2	Selects the Vod2 output level of the power-supply IC (μ PD161660). The V_{CD} pin of the $\mu \mathrm{PD} 161622$ and the $\mathrm{V}_{\mathrm{CD2}}$ pin of the power-supply IC must be connected. $0: V_{D D 2}=V_{D C} \times 2$ $\text { 1: } V_{D D 2}=V_{C D} \times 3$
	D3	PVCOM	Sets the pre-charge time of a 1 -line output period. $\begin{aligned} & 0: \text { VBGR (3.0 V TYP.) } \\ & \text { 1: Vs } \end{aligned}$
	D2	RGONG	Switches the internal regulator of the gate IC (μ PD161640) ON/OFF. When OFF is selected, a low level is output from the RGONG pin, and when ON is selected, a high level is output from the RGONG pin. The RGONG pin of the μ PD161622 and the RGON pin of the gate IC must be connected. 0 : Regulators of gate driver $\left(\mathrm{V}_{\mathrm{B}}\right)$ are OFF 1: Regulators of gate driver $\left(\mathrm{V}_{\mathrm{B}}\right)$ are ON
	D1	RGONP	Switches the internal DC/DC converter of the power-supply IC (μ PD161660) ON/OFF. When OFF is selected, a low level is output from the RGONP pin, and when ON is selected, a high level is output from the RGONP pin. The RGONP pin of the μ PD161622 and the RGON pin of the power-supply IC must be connected. 0 : Regulators of power-supply IC $\left(\mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{s}}\right)$ are OFF 1: Regulators of power-supply IC $\left(\mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{s}}\right)$ are ON
	Do	DCON	Switches the internal DC/DC converter of the power-supply IC (μ PD161660) ON/OFF. When OFF is selected, a low level is output from the DCON pin, and when ON is selected, a high level is output from the DCON pin. The DCON pin of this IC and the DCON pin of the power-supply IC must be connected. 0 : $D C / D C$ converter is OFF 1: DC/DC converter is ON
R26	D 1	$\mathrm{V}_{\text {cD12 }}$	Performs booster control for the DC/DC converter in the power-supply IC (μ PD161660) The data set with this bit is output from the $\mathrm{V}_{\mathrm{cD11}}$ pin and the $\mathrm{V}_{\mathrm{cD1} 12}$ pin. The $\mathrm{V}_{\mathrm{cD11}}$ pin and $\mathrm{V}_{\mathrm{cD1}}$ pin of $\mu \mathrm{PD} 161622$ must be connected to the $\mathrm{V}_{\mathrm{cD1}}$ pin and the $\mathrm{V}_{\mathrm{CD1}} 12$ pin of the power-supply IC.
	Do	VcD11	$\begin{aligned} V_{C D 12}, V_{C D 11} & =0,0: V_{D D 1}=V_{D C} \times 4 \\ & =0,1: V_{D D 1}=V_{D C} \times 5 \\ & =1,0: V_{D D 1}=V_{D C} \times 6 \\ & =1,1: V_{D D 1}=V_{D C} \times 7 \end{aligned}$

Resistor	Bit	Symbol	Function			
R29	D_{7} to D_{0}	EVn	Sets the D/A converter circuit used to adjust the voltage of the reference voltage generator circuit (VBGR) input to the voltage regulator that sets the center value of the panel common drive output. The D/A converter divides the constant voltage generated by the reference voltage generator (VBGR) by 256, and one level can be selected between VBGR and Vss by setting this command. For more detail, refer to 5.5 Common Adjustment Circuit and 5.8 D/A Converter Circuit.			
R30	D_{7}	BPL	Switched the capacity of the γ correction circuit reference voltage generation amplifiers on the side not being used (VPH, VPL, VNH, VNL) to the minimum value based on the polarity inversion timing in order to reduce the current consumption. Determine the amplifier capacity after sufficient evaluation with the actual TFT panel to be used. 0: Normal 1: Reference voltage generation amplifier capacity switch drive			
	D_{6} to D_{4}	CIn	Sets the bias current of the amplifier for setting the panel's COMMON drive waveform center value (VCOM), as shown in the table below. Determine the amplifier capacity after sufficient evaluation with the actual TFT panel to be used.			
			Cl2	Cl 1	CIO	VCOM Center Value Setting Amplifier Bias Current Value
			0	0	0	$0.20 \mu \mathrm{~A}$
			0	0	1	$0.50 \mu \mathrm{~A}$
			0	1	0	$0.10 \mu \mathrm{~A}$
			0	1	1	$0.05 \mu \mathrm{~A}$
			1	0	0	$1.00 \mu \mathrm{~A}$
			1	0	1	$1.50 \mu \mathrm{~A}$
			1	1	0	$2.00 \mu \mathrm{~A}$
			1	1	1	$3.00 \mu \mathrm{~A}$
	D3	VCOMC	Selects whether to use the amplifier for setting the panel's COMMON drive waveform center value (VCOM) or not. This amplifier can be used under conditions such as when an external COMMON drive circuit is being used. 0 : VCOM amplifier operating 1: VCOM amplifier stopped			
	D_{2} to D_{0}	SFn	Sets the capacity of the source output (S_{1} to S_{396}), as shown in the table below. Determine the output capacity after sufficient evaluation with the actual TFT panel to be used.			
			SF2	SF1	SFO	Source Output Bias Current Value
			0	0	0	$0.20 \mu \mathrm{~A}$
			0	0	1	$0.15 \mu \mathrm{~A}$
			0	1	0	$0.25 \mu \mathrm{~A}$
			0	1	1	$0.10 \mu \mathrm{~A}$
			- 1	0	0	$0.20 \mu \mathrm{~A}$
			-1	0	1	$0.30 \mu \mathrm{~A}$
			- 1	1	0	$0.40 \mu \mathrm{~A}$
			1	1	1	$0.05 \mu \mathrm{~A}$

Register	Bit	Symbol	Function		
R31	D7	WHP	Sets the output mode of the reference voltage generator amplifier for setting the white level of the positive-polarity and negative-polarity sides (when VPL and VNL are normally white), as shown below. Determine the amplifier capacity after sufficient evaluation with the actual TFT panel to be used. 0: Normal mode 1: High-power mode (output stage capacity: twice that of normal mode)		
	D_{6} to D_{4}	WIn	Sets the output bias current of the reference voltage generator amplifier for setting the white level of the positive-polarity and negative-polarity sides (when VPL and VNL are normally white), as shown below.		
			WI2 ${ }^{\text {W }}$ W11	WIO	Amplifier Bias Current
			0 0	0	$0.20 \mu \mathrm{~A}$
			0 0	1	$0.50 \mu \mathrm{~A}$
			0	0	$0.10 \mu \mathrm{~A}$
			0	1	$0.05 \mu \mathrm{~A}$
			1 0	0	$1.00 \mu \mathrm{~A}$
			1 0	1	$1.50 \mu \mathrm{~A}$
			1 1	0	$2.00 \mu \mathrm{~A}$
			1 1	1	$3.00 \mu \mathrm{~A}$
	D3	BHP	Sets the output mode of the reference voltage generator amplifier for setting the black level of the positive-polarity and negative-polarity sides (when VPH and VNH are normally white), as shown below. Determine the amplifier capacity after sufficient evaluation with the actual TFT panel to be used. 0: Normal mode 1: High-power mode (output stage capacity: twice that of normal mode)		
	D_{2} to D_{0}	BIn	Sets the output bias current of the reference voltage generator amplifier for setting the black level of the positive-polarity and negative-polarity sides (when VPH and VNH are normally white), as shown below. Determine the amplifier capacity after sufficient evaluation with the actual TFT panel to be used.		
			BI2 Bl1 0	B10	Amplifier Bias Current
			0	0	$0.20 \mu \mathrm{~A}$
			0	1	$0.50 \mu \mathrm{~A}$
			0	0	$0.10 \mu \mathrm{~A}$
			0	1	$0.05 \mu \mathrm{~A}$
			1	0	$1.00 \mu \mathrm{~A}$
			0	1	$1.50 \mu \mathrm{~A}$
			1 1	0	$2.00 \mu \mathrm{~A}$
			1 1	1	$3.00 \mu \mathrm{~A}$
R36	D_{7} to D_{0}	GPH ${ }^{\text {n }}$	Sets the voltage value of the black level of positive polarity. For more det020ail, refer to 5.9γ Curve Correction Power Supply Circuit.		
R37	D_{7} to D_{0}	GNH	Sets the voltage value of the white level of negative polarity. For more detail, refer to 5.9γ Curve Correction Power Supply Circuit.		
R38	D_{7} to D_{0}	GPLn	Sets the voltage value of the white level of positive polarity. For more detail, refer to 5.9γ-Curve Correction Power Supply Circuit.		
R39	D_{7} to D_{0}	GNLn	Sets the voltage value of the white level of positive polarity. For more detail, refer to 5.9γ-Curve Correction Power Supply Circuit.		

Register	Bit	Symbol	Function
R114	D_{1}, D	RTSCn	Selects the optimum internal circuit operation based on the operating voltage of the interface circuits. The following settings are recommended based on this register. Caution Always set this register and internal logic operating voltage setting register (R115) to the same value.
R115	D_{1}, D	RTSLn	Selects the optimum internal circuit operation based on the operating voltage of the internal logic circuits. The following settings are recommended based on this register. Caution Always set this register and interface operating voltage setting register (R114) to the same value.

8. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Ratings	Unit
Power supply voltage	Vs_{s}	-0.5 to +6.5	V
Power supply voltage	$\mathrm{V}_{\mathrm{cc} 1}$	-0.5 to +4.0	V
Power supply voltage	$\mathrm{V}_{\mathrm{cc} 2}$	-0.5 to $\mathrm{Vcc} 1+0.5$	V
Power supply voltage for γ curve correction	V_{1} to V_{5}	-0.5 to $\mathrm{Vs}+0.5$	V
Input voltage	V_{1}	-0.5 to $\mathrm{Vcc} 1+0.5$	V
Input current	I_{1}	± 10	mA
Operating ambient temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions ($\mathrm{TA}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Power supply voltage	V_{s}	4.3	5.0	5.5	V
	$\mathrm{~V}_{\mathrm{cc} 1}$	2.5	2.7	3.6	V
	$\mathrm{~V}_{\mathrm{cc} 2}$	1.7	1.8	$\mathrm{~V}_{\mathrm{cc} 1}$	V
Input voltage	V_{11} Note1	0		$\mathrm{~V}_{\mathrm{cC} 1}$	V
	$\mathrm{~V}_{12}$ Note2	0		$\mathrm{~V}_{\mathrm{cc} 2}$	V

\star Notes 1. Pins of Vccc_{1} power-supply system: Touto to Tout15, IP_{0} to $\mathrm{IP}_{3}, \mathrm{OP}_{0}$ to OP_{7}, LPMG, LPMP, GOE ${ }_{1}, \mathrm{GOE}_{2}$, GSTB, GCLK, DCON, RGONP, RGONG, Vcd11, Vcd12, Vcd2, Vce, Rsel, TSTRTST, TSTVIHL, OSCIN
2. Pins of $V_{c c 2}$ power-supply system: /CS, /RD(E), /WR(R,/W), D_{0} to $D_{5}, D_{6}(S C L), D_{7}(S I), R S, / R E S E T, C 86$, PSX

Electrical Specifications (Unless Otherwise Specified, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc1}=2.5$ to 3.6 V ,
$\mathrm{Vcc} 2=1.7 \mathrm{~V}$ to $\mathrm{Vcc} 1, \mathrm{Vs}=4.3$ to 5.5 V)

Parameter	Symbol	Condition	Specification			Unit
			MIN.	TYP. ${ }^{\text {Note1 }}$	MAX.	
High level input voltage	$\mathrm{V}_{\mathrm{H} 1}$	Vcc1	0.8 Vcc 1			V
	$\mathrm{V}_{\mathbf{1 H} 2}$	Vcc2	0.8 Vcc 2			V
Low level input voltage	VIL1	Vcc1			0.2 Vcc 1	V
	VIL2	Vcc2			0.2 Vcc 2	V
High level output voltage	Vor1	$\mathrm{V}_{\text {cc1 }}$, lout $=-100 \mu \mathrm{~A}$	$0.9 \mathrm{Vcc1}$			V
	VoH2	$V_{\text {cca }}$, lout $=-1 \mathrm{~mA}$	0.8 Vcc 2			V
	Vон3	VCOUT1, VCOUT2, lout $=-100 \mu \mathrm{~A}$	0.9 Vs			V
Low level output voltage	Vol1	$\mathrm{VCc1}$, lout $=100 \mu \mathrm{~A}$			0.1 Vcc 1	V
	Vol2	$\mathrm{V}_{\mathrm{cc} 2}$, Iout $=1 \mathrm{~mA}$			0.2 Vcc 2	V
	Vol3	VCOUT1, VCOUT2, lout $=100 \mu \mathrm{~A}$			0.1 Vs	V
VCOM output voltage	Vсомн	ISOURCE $=100 \mu \mathrm{~A}$	VCOM - 0.3			mV
	Vcoml	ISINK $=-100 \mu \mathrm{~A}$			$\mathrm{VCOM}+0.3$	mV
High level input current	$\mathrm{liH1}$	Except D_{0} to D_{15}			1	$\mu \mathrm{A}$
Low level input current	ILL1	Except Do to D ${ }_{15}$			-1	$\mu \mathrm{A}$
High level leakage current	ILIH	D_{0} to D_{15}			10	$\mu \mathrm{A}$
Low level leakage current	ILIL	D_{0} to D_{15}			-10	$\mu \mathrm{A}$
High level driver output current	Ivor	$\begin{aligned} & \mathrm{V}_{\mathrm{x}}=3.5 \mathrm{~V}, \text { Vout }=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=5.0 \mathrm{~V} \text { Note2 } \end{aligned}$	-85			$\mu \mathrm{A}$
Low level driver output current	Ivol	$\begin{aligned} & \mathrm{V}=1.5 \mathrm{~V}, \text { Vout }=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{s}}=5.0 \mathrm{~V} \text { Note2 } \end{aligned}$			30	$\mu \mathrm{A}$
VCOM common output voltage fluctuation parameter	$\Delta \mathrm{V}$ сом		-10		10	\%
Current consumption	Icc1	Vcc1 (when non-access CPU)		140	240	$\mu \mathrm{A}$
	Icc2	Vcc2 (when non-access CPU)		0.2	5	$\mu \mathrm{A}$
	Istby	Vcc1 (stand-by mode)		1	10	$\mu \mathrm{A}$
	Is	Vs (65,000-color mode) ${ }^{\text {Note3 }}$		600	1000	$\mu \mathrm{A}$
		Vs (8-color mode) ${ }^{\text {Note3 }}$		45	100	$\mu \mathrm{A}$
Driver output Current (pre-charge)	Ivoh	$\mathrm{V}_{\mathrm{s}}=5.0 \mathrm{~V}$, Vout $=\mathrm{V}_{\mathrm{s}}-0.1 \mathrm{~V}^{\text {Note2 }}$		-0.14	-0.07	mA
	Ivol	V s $=5.0 \mathrm{~V}$, Vout $=\mathrm{V}_{\mathrm{s}}+0.1 \mathrm{~V}^{\text {Note2 }}$	0.1	0.25		mA
Output voltage deviation	$\Delta \mathrm{V}_{01}$	Vout $=1.3 \mathrm{~V}$ to $(\mathrm{V} \text { s }-1.3 \mathrm{~V})^{\text {Note2 }}$	-20		20	mV
	$\Delta \mathrm{V}$ O2	$\begin{aligned} & \text { Vout }=0.3 \text { to } 1.3 \mathrm{~V}^{\text {Note2 }} \\ & \left(\mathrm{V}_{\mathrm{s}}-1.3 \mathrm{~V}\right) \text { to }(\mathrm{Vs}-0.3 \mathrm{~V}) \end{aligned}$	-30		30	mV

Notes 1. TYP. values are reference values when $T_{A}=25^{\circ} \mathrm{C}$
2. $V \times$ refers to the output voltage of analog output pins S_{1} to S_{396}.

Vout refers to the voltage applied to analog output pins S_{1} to S_{396}
3. Frame frequency, line inversion mode selection, dot checkerboard input pattern, no load

Switching characteristics (Unless Otherwise Specified, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc} 1=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc} 2=1.7 \mathrm{~V}$ to $\mathrm{Vcc} 1, \mathrm{Vs}=5.0 \mathrm{~V}$)

Note TYP. values are reference values when $T_{A}=25^{\circ} \mathrm{C}$.

AC Characteristics (Unless Otherwise Specified, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc} 1=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc2}=1.7 \mathrm{~V}$ to Vcc 1)
(a) i80 series CPU interface

When $\mathrm{Vcc}_{1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc} 2=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc1} \geq \mathrm{Vcc} 2$ (normal write mode, R114 and R115 = 03H)

Parameter	Symbol	Condition	MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
Address hold time	taH8	RS	0			ns
Address setup time	tas8	RS	0			ns
System cycle time	tcyc8		250			ns
Control low-level pulse width (/WR)	tcclw	/WR	60			ns
Control low-level pulse width (/RD)	tcclr	/RD	140			ns
Control high-level pulse width (/WR)	tcchw	/WR	60			ns
Control high-level pulse width (/RD)	tcchr	/RD	80			ns
Data setup time	tos8	Doto D_{15}	60			ns
Data hold time	toh8	Doto D_{15}	0			ns
/RD access time	tacc8	Doto $\mathrm{D}_{15}, \mathrm{CL}=100 \mathrm{pF}$			110	ns
Output disable time	toh8	D_{0} to $\mathrm{D}_{15}, \mathrm{CL}=5 \mathrm{pF}$	10		100	ns

Note TYP. values are reference values when $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Remarks 1. The input signal's rise/fall times (tr and tf) are rated as 15 ns or less.
2. All timing is rated based on 20 to 80% of Vcc2.

When $\mathrm{Vcc}_{1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc}_{2}=1.7$ to $2.5 \mathrm{~V}, \mathrm{Vcc} 1 \geq \mathrm{Vcc} 2$ (normal write mode, R 114 and $\mathrm{R} 115=03 \mathrm{H}$)

Parameter	Symbol	Condition	MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
Address hold time	tah8	RS	0			ns
Address setup time	tas8	RS	0			ns
System cycle time	tcyc8		333			ns
Control low-level pulse width (/WR)	tcclw	/WR	60			ns
Control low-level pulse width (/RD)	tccls	/RD	160			ns
Control high-level pulse width (/WR)	tcchw	/WR	100			ns
Control high-level pulse width (/RD)	tcchr	/RD	140			ns
Data setup time	tos8	Doto D15	60			ns
Data hold time	toh8	Doto D15	0			ns
/RD access time	taCc	Doto $\mathrm{D}_{15}, \mathrm{CL}=100 \mathrm{pF}$			150	ns
Output disable time	toн8	D_{0} to $\mathrm{D}_{15}, \mathrm{CL}_{2}=5 \mathrm{pF}$	10		150	ns

Note TYP. values are reference values when $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Remarks 1. The input signal's rise/fall times (tr and tf_{f}) are rated as 15 ns or less.
2. All timing is rated based on 20 to 80% of Vcc2.

When $\mathrm{Vcc}_{1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vccc}_{2}=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc}_{1} \geq \mathrm{Vcc2}$ (high-speed RAM write mode, valid only for writing data R114 and R115 = 03H)

Parameter	Symbol	Condition	MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
Address hold time	$\mathrm{t}_{\text {AH8 }}$	RS	0			ns
Address setup time	tas8	RS	0			ns
System cycle time	tcycs		62			ns
Control low-level pulse width (/WR)	tcclw	/WR	35			ns
Control high-level pulse width (/WR)	tcchw	/WR	25			ns
Data setup time	tos8	Doto D_{15}	25			ns
Data hold time	toh8	Doto D_{15}	0			ns

Note TYP. values are reference values when $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Remarks 1. The input signal's rise/fall times (tr and tf) are rated as 15 ns or less.
2. All timing is rated based on 20 to 80% of Vcc 2 .

When $\mathrm{Vcc}_{1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc}_{2}=1.7$ to $2.5 \mathrm{~V}, \mathrm{Vcc} 1 \geq \mathrm{Vcc} 2$, (high-speed RAM write mode, valid only for writing data, R114 and R115 = 03H)

Parameter	Symbol	Condition	MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
Address hold time	taH8	RS	0			ns
Address setup time	tas8	RS	0			ns
System cycle time	tcyc8		83			ns
Control low-level pulse width (/WR)	tcclw	/WR	35			ns
Control high-level pulse width (/WR)	tcchw	/WR	30			ns
Data setup time	tos8	Doto D_{15}	30			ns
Data hold time	toh8	Doto D_{15}	0			ns

Note TYP. values are reference values when $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Remarks 1. The input signal's rise/fall times (tr and tf) are rated as 15 ns or less.
2. All timing is rated based on 20 to 80% of Vcc 2 .
(b) M68 series CPU interface

When Vcc1 = 2.5 to $3.6 \mathrm{~V}, \mathrm{Vcc} 2=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc} 1 \geq \mathrm{Vcc} 2$ (normal mode, R114 and R115 = 03H)

Parameter		Symbol	Condition	MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
Address hold time		taH6	RS	0			ns
Address setup time		tas6	RS	0			ns
System cycle time		tcyce		250			ns
Data setup time		tos6	Doto D_{15}	80			ns
Data hold time		toh6	Doto D_{15}	0			ns
Access time		tacce	D_{0} to $\mathrm{D}_{15}, \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$			110	ns
Output disable time		toh6	D_{0} to $\mathrm{D}_{15}, \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF}$	10		100	ns
Enable high pulse width	Read	tewhr	E	140			ns
	Write	tewhw	E	120			ns
Enable low pulse width	Read	tewLR	E	80			ns
	Write	tewLw	E	60			ns

Note TYP. values are reference values when $T_{A}=25^{\circ} \mathrm{C}$.

Remarks 1. The rise and fall times (tr and tf) of input signals are rated at 15 ns or less. When using a fast system

2. All timing is rated based on 20 to 80% of Vcc 2 .

When $\mathrm{Vcc}_{1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc}_{2}=1.7$ to $2.5 \mathrm{~V}, \mathrm{Vcc}_{1} \geq \mathrm{Vcc2}$ (normal mode, R 114 and $\mathrm{R} 115=\mathbf{0 3 H}$)

Parameter		Symbol	Condition	MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
Address hold time		taH6	RS	0			ns
Address setup time		tas6	RS	0			ns
System cycle time		tcyc6		333			ns
Data setup time		tos6	Doto D15	100			ns
Data hold time		tDH6	Doto D_{15}	0			ns
Access time		tacce	D_{0} to $\mathrm{D}_{15}, \mathrm{C}_{L}=100 \mathrm{pF}$			150	ns
Output disable time		tон6	D_{0} to $\mathrm{D}_{15}, \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF}$	10		150	ns
Enable high pulse width	Read	tewhr	E	160			ns
	Write	tewhw	E	120			ns
Enable low pulse width	Read	tewLr	E	140			ns
	Write	tewLw	E	100			ns

Note TYP. values are reference values when $T_{A}=25^{\circ} \mathrm{C}$.

Remarks 1. The rise and fall times (t_{r} and t_{f}) of input signals are rated at 15 ns or less. When using a fast system

2. All timing is rated based on 20 to 80% of Vcc 2 .

When $\mathrm{Vccc}_{1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc}_{2}=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc}_{1} \geq \mathrm{Vcc} 2$ (high-speed RAM write mode, valid only for writing data, R114 and R115 = 03H)

Parameter	Symbol	Condition	MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
Address hold time	tАН6	RS	0			ns
Address setup time	tas6	RS	0			ns
System cycle time	tcyc6		62			ns
Data setup time	tos6	Doto D15	20			ns
Data hold time	toh6	Doto D15	0			ns
Enable high pulse width	tewhr	E	35			ns
Enable low pulse width	tewLr	E	20			ns

Note TYP. values are reference values when $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Remarks 1. The rise and fall times ($t r$ and $t f$) of input signals are rated at 15 ns or less. When using a fast system

2. All timing is rated based on 20 to 80% of Vcc 2 .

When $\mathrm{Vcc}_{1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc} 2=1.7$ to $2.5 \mathrm{~V}, \mathrm{Vcc} 1 \geq \mathrm{Vcc} 2$ (high-speed RAM write mode, valid only for writing data)

Parameter	Symbol	Condition	MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
Address hold time	tАн6	RS	0			ns
Address setup time	tas6	RS	0			ns
System cycle time	tcyc6		83			ns
Data setup time	tos6	Doto D ${ }_{15}$	30			ns
Data hold time	toh6	Doto D15	0			ns
Enable high pulse width	tewhr	E	40			ns
Enable low pulse width	tewLr	E	30			ns

Note TYP. values are reference values when $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Remarks 1. The rise and fall times (tr and tf) of input signals are rated at 15 ns or less. When using a fast system

2. All timing is rated based on 20 to 80% of Vcc 2 .
(c) Serial interface

$\mathrm{Vcc}_{1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc} 2=1.7$ to $2.5 \mathrm{~V}, \mathrm{Vcc} 1 \geq \mathrm{Vcc} 2$

Parameter	Symbol	Condition	MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
Serial clock cycle	tscyc	SCL	250			ns
SCL high-level pulse width	tshw	SCL	100			ns
SCL low-level pulse width	tsLw	SCL	100			ns
Address hold time	tsah	RS	150			ns
Address setup time	tsas	RS	150			ns
Data setup time	tsDs	SI	100			ns
Data hold time	tsDH	SI	100			ns
CS - SCL time	tcss	/CS	150			ns
	tcsh	/CS	150			ns

Note TYP. values are reference values when $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\mathrm{Vcc}_{1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vcc} 2=2.5$ to $\mathbf{3 . 6} \mathrm{V}, \mathrm{Vcc} 1 \geq \mathrm{Vcc} 2$

Parameter	Symbol	Condition	MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
Serial clock cycle	tscyc	SCL	150			ns
SCL high-level pulse width	tshw	SCL	60			ns
SCL low-level pulse width	tsLw	SCL	60			ns
Address hold time	tsah	RS	90			ns
Address setup time	tsas	RS	90			ns
Data setup time	tsDs	SI	60			ns
Data hold time	tsDH	SI	60			ns
CS - SCL time	tcss	/CS	90			ns
	tcsh	/CS	90			ns

Note TYP. values are reference values when $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Remarks 1. The rise and fall times of input signal (tr and tf) are rated as 15 ns or less.
2. All timing is rated based on 20 to 80% of Vcc 2 .
(d) Common

Parameter	Symbol	Condition	MIN.	TYP. ${ }^{\text {Note1 }}$	MAX.	Unit
Oscillation frequency	fosc1	Internal oscillator (RSEL $=$ L)	250	450	750	kHz
	fosc2	External resistance connection oscillator $\left(\mathrm{R}_{\text {sel }}=\mathrm{H}\right), \mathrm{R}=51 \mathrm{k} \Omega^{\text {Note2 }}$		450		kHz
Calibration setting time (frame frequency)	tcal (fframeo)	Note3	$\begin{gathered} 44 \\ (128.4) \\ \hline \end{gathered}$	$\begin{gathered} 82.2 \\ (68.7) \\ \hline \end{gathered}$	$\begin{gathered} 184 \\ (32.6) \\ \hline \end{gathered}$	$\begin{gathered} \mu \mathrm{s} \\ (\mathrm{~Hz}) \end{gathered}$
Frame frequency	frrame1	Uncalibrated	38	70	115	Hz
	frrame2	Calibrated ${ }^{\text {Note4 }}$	72	80	88	Hz
	frrame 3	Calibrated ${ }^{\text {Note5 }}$	77	80	83	Hz
Reset pulse width at power on	tvr	$\mathrm{V}_{\mathrm{cc} 1}$ or V $\mathrm{cc2}$ to /RESET \uparrow	100			ns
Reset pulse width	trw		100			ns
Reset time	tr	/RESET \uparrow to interface operation	100			ns

Notes 1. TYP. values are reference values when $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. The resistor value of " R " is depending on the characteristic of the parasitism capacity such as wiring. It is recommended to determine this value after through evaluation with actual system.
3. The relationship between the frame frequency and the calibration setting time is as follows.

$$
\text { ffRAMEO }=1 / \text { tcal x } 177
$$

4. Measured at $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, after calibration at frame frequency $=80 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ exactly.
5. Measured at $\pm 5^{\circ} \mathrm{C}$, after calibration at frame frequency $=80 \mathrm{~Hz}$ exactly.

9. μ PD161622, 161640, and 161660 CONNECTION DIAGRAM EXAMPLE

Connection diagram examples for the μ PD161622, 161640, and 161660 are show below.

10. EXAMPLE of μ PD161622 and CPU CONNECTION

Examples of μ PD161622 and CPU connection are shown below.
In the example below, RS pin control in parallel interface mode is described for the case when the least significant bit of the address bus is being used.
(1) i80 series format

(2) M68 series format

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

